Effect of Measurement Bandwidth on Partial Discharge Localization Accuracy in Power Transformers

verfasst von
Sahand Seifi, Peter Werle, Hossein Mohseni, Amir Abbas Shayegani Akmal
Abstract

Partial discharge (PD) measurement as a common method for assessing the insulation system of power transformers could be used to detect a fault in the insulation system in early stages. In general, finding the location of the fault in the insulation system is not straightforward even after removing the active part due to the complex structure of power transformers. Therefore, a precise PD localization can also substantially reduces the time and cost of troubleshooting. Electrical PD measurement is one of the methods for localization of PDs, which already is extensively applied for detecting PD signals. It also provides information regarding PD pattern and the signal shape, which are very valuable to evaluate the insulation system condition. In this method, two measured PD signals at two ends of the winding are employed for localization. The division of measured PD signals in the frequency domain by transfer functions of each point along the winding results in a pair of calculated signals. The point along the winding at that its pair of calculated signals is more similar to each other is the location of the original PD. In this contribution, some PDs are injected in different points along the winding of a distribution transformer using a PD calibrator. Thereupon, they are measured at the two winding ends and also in injection points. In the first step, the effect of measurement bandwidth on the shape of the measured PD pulses is investigated. Then, the effect of these bandwidths on PD localization is scrutinized.

Organisationseinheit(en)
Fachgebiet Hochspannungstechnik und Asset Management (Schering-Institut)
Externe Organisation(en)
University of Tehran
Typ
Aufsatz in Konferenzband
Band
2
Seiten
894-905
Anzahl der Seiten
12
Publikationsdatum
31.10.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Wirtschaftsingenieurwesen und Fertigungstechnik
Elektronische Version(en)
https://doi.org/10.1007/978-3-030-31680-8_87 (Zugang: Geschlossen)