Multidimensional Analysis of a Real Transformer Fleet Based on the Evaluation of Oil Properties

verfasst von
Sebastian Schreiter, Holger Lohmeyer, Peter Werle
Abstract

Transformers belong to the most important and most elementary elements in the power system. Because an unplanned outage of a transformer can lead to interrupted power supply or the stop of production, the related costs can be much higher than the costs of the transformer itself. Therefore it is of elementary interest for operators of transformers to know the condition of the transformers, identify risky units and to avoid unplanned outages. Therefore different methods of condition assessment were developed. The most important groups of those methods are electric and dielectric measurements of the transformer and the different analyzing techniques on the insulation liquid (oil tests). The different oil tests can be separated into two main groups of parameters: Firstly the parameters of the standard oil test (SOT). Secondly, failures at the active part can be indicated with the help of the results of the dissolved gas analysis (DGA). In this contribution both groups of parameters - the results of the standard oil test as well as the results of a dissolved gas analysis - were analyzed in a multidimensional investigation to observe if dependencies between both groups of parameters can be found. Therefore it is investigated if typical increased gas contents can be found depending on oil properties or if both groups of parameters can influence each other. These investigations were based on a huge number of oil test results of real transformers of different voltage levels, applications, age, and manufacturers.

Organisationseinheit(en)
Fachgebiet Hochspannungstechnik und Asset Management (Schering-Institut)
Institut für Elektrische Energiesysteme
Externe Organisation(en)
Hochschule für Technik, Wirtschaft und Kultur Leipzig (HTWK)
ABB Group
Typ
Aufsatz in Konferenzband
Seiten
697-704
Anzahl der Seiten
8
Publikationsdatum
2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Wirtschaftsingenieurwesen und Fertigungstechnik
Elektronische Version(en)
https://doi.org/10.1007/978-3-030-31676-1_66 (Zugang: Geschlossen)