

Institute of Electric Power Systems Electric Power Engineering Section Prof. Dr.-Ing. habil. L. Hofmann

Leibniz University Hanover

Institute of Electric Power Systems

Electric Power Engineering Section

Formulary

Electric Power Engineering

Lutz Hofmann

7th Edition, September 2022

© Institute of Electric Power Systems Power Engineering Section Leibniz University Hannover Prof. Dr.-Ing. habil. L. Hofmann www.ifes.uni-hannover.de

Institute of Electric Power Systems Electric Power Engineering Section Prof. Dr.-Ing. habil. L. Hofmann

Preface

This formulary includes definitions and formulas from lectures of the *Electric Power Engineering Section* of the *Institute of Electric Power Systems (IfES)* at Leibniz University Hanover, Germany.

The formulary introduces basic mathematical knowledge and definitions as well as elementary definitions of electric power engineering using typical German symbols, e.g. for complex rotating and stationary phasors, the passive sign convention or multi-port representation of electrical devices. From the voltage equations of the symmetrical three-phase power system, the single-phase equivalent circuit diagram is derived using the symmetry conditions. The presentation of the methodology with the symmetrical components enables the reader to easily calculate unbalanced operating states as a result of, e.g., unbalanced short circuits or interruptions by a fault-specific interconnection of the positive-, negative- and zero-sequence systems.

For the system-defining equipment of electrical power systems, such as synchronous machines, induction machines, equivalent networks, transformers and lines, the respective positive-, negative- and zero-sequence equivalent circuits for the calculation of the steady-state operating behavior are presented and, if necessary, supplemented by equivalent circuits for the transient and subtransient operating behavior.

Finally, basic methods for network calculation, equipment design and network control are presented, such as a method for the calculation of current distributions in medium- and low-voltage networks, stability analysis of the single machine problem, frequency control based on the dynamic balance model as well as short-circuit current calculation, especially according to IEC EN 60909. Furthermore, the calculation of line-to-ground faults in networks with different types of star point grounding is presented.

The authors hope that this collection of formulae will not only serve students as an assistance in their exams and lecture-accompanying exercises but will also be of use in their future professional life.

This is the seventh edition of the formulary provided by the Electric Power Engineering Section in English language. Suggestions for this edition are welcome and can be submitted to hofmann@ifes.uni-hannover.de.

Hannover, September 2022

Lutz Hofmann and the research assistants of the Electric Power Engineering Section of IfES

Institut für Elektrische Energiesysteme Fachgebiet Elektrische Energieversorgung Prof. Dr.–Ing. habil. L. Hofmann

Table of contents

1	Sym	Symbols and Abbreviations			
2	Fun	dament	tals	1	
	2.1	Instan	taneous Values and Phasor Representation	1	
	2.2	Passiv React	ve Sign Convention (PSC) and Reference Direction of the Active and ive Power	2	
	2.3	Relati Doma	ons Between Sinusoidal Voltages and Currents in the Time and Frequing for Linear Elements	ency 2	
	2.4	Power	r in AC Circuits Using the PSC	3	
	2.5	Imped	lance, Admittance and Apparent Power of Basic Elements Using the F	SC 4	
	2.6	Harmonics			
	2.7	Multi	-Port Theory	6	
		2.7.1	One-Port Networks	6	
		2.7.2	Two-Port Networks	6	
		2.7.3	Special Two-Port Networks and Their Equivalent Circuits	8	
3	Thr	ee-Phas	se System	9	
	3.1	Wye (Connection and Delta Connection	9	
	3.2	Volta	ges and Currents in the Three-Phase System	10	
	3.3	Balanced Three-Phase System			
		3.3.1	Conditions for a balanced three-phase system	11	
		3.3.2	Single-Phase Equivalent Circuit	11	
		3.3.3	Relations Between Phase, Neutral and Line Voltages and Currents	12	
		3.3.4	Phasor Diagram and Three-Phase Apparent Power	13	
	3.4	Wye-l	Delta Transformation	13	
	3.5	Unbal	anced Three-Phase System	14	
		3.5.1	Symmetrical Components	14	
		3.5.2	Equivalent Circuits in Symmetrical Components	15	
		3.5.3	Fault Conditions and Interconnections of Equivalent Circuits in Symmetrical Components	16	
4	Equ	ivalent	Networks	17	
5	Syn	chrono	us Machines	18	
	5.1	Equiv	alent Circuits for Steady-State Operating Conditions	18	
	5.2	Equiv	alent Circuit for Transient Operating Conditions	19	
	5.3	Equiv	alent Circuit for Subtransient Operating Conditions	19	
	5.4	Synch	ronous Grid Operation	20	
		5.4.1	Power to Load Angle Characteristics	21	
		5.4.2	Power Diagram	21	
	5.5	Princi	ple of Angular Momentum and Equations of Motion	22	
6	Indu	uction N	Machines with Squirrel-Cage Rotor	23	
	6.1	Simpl	ified Equivalent Circuits for Steady-State Operating Conditions	23	

	6.2	Simplified Equivalent Circuits for Transient Operating Conditions	. 24
	6.3	Equation of Motion	. 24
7	Trar	nsformers	. 25
	7.1	Vector Group Symbols	. 25
	7.2	Conversions of Variables Between Transformer Voltage Levels	. 25
	7.3	Two-Winding Transformer	. 26
	7.4	Calculation of the Transformer Equivalent Circuit Elements	. 27
		7.4.1 Calculation of the Series Impedance Using the Short-Circuit Test	. 27
		7.4.2 Calculation of the Magnetizing Impedance by an Open-Circuit Test	. 27
	7.5	Typical Vector Groups (DIN VDE 0532)	. 28
	7.6	Three-Winding Transformer	. 29
8	Trar	smission Lines	. 30
	8.1	Surge Impedance and Propagation Constant	. 30
	8.2	Solution of the Line Equations in the Frequency Domain	. 30
	8.3	Distributed Line Model and Two-Port Equations	. 31
	8.4	Approximations for Electrically Short Transmission Lines ($ \underline{\gamma} l \ll 1$)	. 31
	8.5	Operational Performance	. 32
	8.6	Terminal Power, Losses and Reactive Power Demand	. 32
	8.7	Surge Impedance Loading (Natural Load)	. 32
9	Med	ium- and Low-Voltage Grids	. 33
	9.1	Current Distribution	. 33
	9.2	Load Application Factor ε	. 33
10	Roto	r Angle Stability of the Single-Machine Problem	. 34
	10.1	Small-Signal Stability	. 34
	10.2	Transient Stability	. 34
11	Line	Frequency Control	. 35
	11.1	Balance Model of the Power System	. 35
	11.2	Proportional Gains and Droops	. 35
	11.3	Power System Operating Point after Completion of Primary Control (without	26
	11.4	Secondary Control)	. 36
10	11.4	Power System Operating Point after Completion of Secondary Control	. 36
12	Snor		. 37
	12.1	Short-Circuit Current Over Time	. 37
	12.2	Mathad of the Equivalent Valtage Source of the Short Circuit Logotian	. 37
	12.3	(According to IEC 60909 and VDE 0102)	. 38
	12.4	Extending the Method of the Equivalent Voltage Source at the Short-Circuit Location from Section 12.3 by the Short-Circuit Current Contributions of Full Sized Converters (acc. IEC 60909 resp. VDE 0102)	l- . 39
	12.5	Factors for the Calculation of Short-Circuit Currents	. 39
		12.5.1 Factor κ for the Calculation of the Peak Short-Circuit Current i_p	. 39

Institut für Elektrische Energiesysteme Fachgebiet Elektrische Energieversorgung Prof. Dr.-Ing. habil. L. Hofmann

		12.5.2 Factor μ for the Calculation of the Sym. Breaking Current $I_{\rm b}$. 40
		12.5.3 Factors m and n for the Calculation of the Thermal Equivalent Short- Circuit Current I_{th}	. 41
	12.6 Consideration of Impedance Correction Factors (according to IEC 60909 and		
		VDE 0102)	. 42
	12.7	Calculation with Kirchhoff's Laws	. 43
	12.8	Thermal Short-Circuit Strength	. 43
	12.9	Mechanical Short-Circuit Strength	. 45
		12.9.1 Determination of Magnetic Fields and Forces	. 45
		12.9.2 Maximum Forces Between Main Conductors and Sub-Conductors	. 46
		12.9.3 Calculation of Mechanical Stress	. 47
13	Neut	ral Grounding	. 48
	13.1	Equivalent Circuit for Single-Phase Line-to-Ground Faults	. 48
	13.2	Currents and Voltages at Single-Phase Line-to-Ground Faults	. 48
	13.3	Isolated Neutral Point	. 50
	13.4	Resonant-Grounded Neutral Point (RESPE)	. 50
	13.5	Low-Impedance-Grounded Neutral Point (NOSPE)	. 51
14	Ther	modynamics	. 52
15	Wine	d Energy	. 52
16	Ener	gy Economics	. 53
17	Anne	ex	. 54
	17.1	Selection of SI Base Units	. 54
	17.2	Selection of Derived Units	. 54
	17.3	Natural Constants and Mathematical Constants	. 55
	17.4	Phasor Rotations with a and j	. 55
	17.5	<i>n</i> -th Root of a Complex Number <i>G</i>	. 55
	17.6	Conversion Formulas for Hyperbolic and Exponential Functions	. 56
	17.7	Conversion Formulas for Trigonometric Functions	. 56
	17.8	Selection of Values of Trigonometric Functions	. 57

1 Symbols and Abbreviations

General Symbols

8	Instantaneous value	\boldsymbol{A}	Matrix
\hat{g}	Value of an amplitude	a	(Column)vector
G	RMS value	j	Imaginary unit

General Explanations

Electric quantities are given as RMS values.	U, I
Equations describing single-phase equivalent circuit dia- grams consist of phase quantities.	U, I
Rated quantities are marked by the index r.	U _r
Nominal and rated voltages (index n or r) are line-to-line voltages.	$U_{\rm n}$, $U_{\rm r}$
Time-dependent quantities are written in lower-case let- ters.	и, і
Complex quantities are indicated by underlining.	<u>U</u> , <u>I</u>

Nomenclature According to DIN EN 60027-7:2011

Position	Meaning	Example	Explanation
0	Identification	$U_{\mathrm{q}}, X_{\mathrm{\sigma}}, I_{\mathrm{r}}$	Voltage source, leakage reactance, rated current
1	Phase quantities a, b, c or symmetrical compo- nents 1, 2, 0	\underline{U}_1	Voltage of the positive- sequence system
2	Operating state	\underline{U}_{1k1}	Phase-to-ground fault
3	Electrical device	\underline{U}_{1k1T4}	At the transformer T4
4	Location	$\underline{U}_{1k1T4OS}$	At the high-voltage side
5	Additional information	$\underline{U}_{1k1T4OSmax}$	Highest value

Note:

For the designation according to DIN EN 60027-7:2011, specific preferred indexes are chosen for position 0), for example:

Source voltage in the positive-sequence system: U_{q1}

Source voltage in phase a:

Symbols

Distance	R	Resistance
Cross-sectional area,	S	Slip, proportional droop
energy yield	S	Apparent power
Susceptance, magnetic flux	t	Time
density	Т	Period
Voltage factor	U	Voltage
Capacitance	v	Detuning,
Diameter, attenuation		level of intermeshing
Energy	W	Number of turns
Force	ü	Transformation ratio
Conductance	Ζ	Impedance, section modulus
Magnetic field strength	γ	Propagation constant
Current	δ	Rotor displacement angle
Proportional gain,		ground fault factor
imbalance factor	Е	Field ratio
Correction factor	η	Efficiency
Length	0-	Specific ground resistance
Inductance	PΈ	
Rotational speed	arphi	Phase angle
Number of pole pairs	σ	Mechanical stress
Active power	ω	Angular frequency
Reactive power, heat	arOmega	Mechanical angular frequency
	Distance Cross-sectional area, energy yield Susceptance, magnetic flux density Voltage factor Capacitance Diameter, attenuation Energy Force Conductance Magnetic field strength Current Proportional gain, imbalance factor Correction factor Length Inductance Rotational speed Number of pole pairs Active power Reactive power, heat	Distance R Cross-sectional area, s energy yield S Susceptance, magnetic flux t density T Voltage factor U Capacitance v Diameter, attenuation v Energy w Force \ddot{u} Conductance Z Magnetic field strength γ Current δ Proportional gain, v imbalance factor ε Correction factor η Length $\rho_{\rm E}$ Rotational speed φ Number of pole pairs σ Active power ω

Abbreviations

ASC	Active sign convention	kap./cap.	Capacitive
E	Ground potential	Μ	Neutral point, star point
ESB	Equivalent circuit	PSC	Passive sign convention
ind.	Inductive	SC	Symmetrical components

Special symbols and mathematical operations

$\underline{a} = e^{j 2\pi/3}$	Complex operator of length 1	$ \underline{G} = G$	Absolute value of \underline{G}
Λ	(unit phasor) Difference	$\operatorname{Re}\left\{\underline{G}\right\} = G_{\perp}$	Real part of \underline{G}
_		$\operatorname{Im}\left\{\underline{G}\right\} = G_{\perp\perp}$	Imaginary part of \underline{G}

Examples of per unit and per unit length quantities

$$\underline{z} = \frac{\underline{Z}}{\underline{Z}_{B}} \qquad \underline{z} \text{ in relation to } \underline{Z}_{B} \text{ in p.u. or in \%}$$
$$\underline{Z}' = \frac{\underline{Z}}{l} \qquad \text{Impedance per unit length } \underline{Z}' \text{ in } \Omega/\text{m or } \Omega/\text{km}$$

Superscript indices

,

Transient parameter (voltage, re-	"	Subtransient parameter (voltage,
actance, etc.) or parameter con-		reactance, etc.)
verted to another voltage level or	*	Conjugate parameter
to the stator side or a per unit	т	Transposed matrix/vector
length parameter	1	Transposed matrix/vector

Subscript indices (a selection) that describe individual variables in more detail

Δ	Delta connection parameter	$\ell, 1$	Open-circuit operation, no-load
Y	Wye connection parameter		operation
1, 2, 0	Positive- (1), negative- (2)	L	(Transmission) line
0	and zero- (0)sequence system	m	Magnetizing, mechanical, main conductor
0	steady-state operating point	max	Maximum
a, b, c	Phase a, phase b, phase c	min	Minimum
ab	Emitted or output	Μ	Motor, neutral-point, machine-
b	Reactive portion	ME	Neutral-to-ground
В	Reference value	MV	Medium-voltage winding
С	Capacitive, charging		(three-winding transformer)
d	d-axis	n	Nominal
D	Damper longitudinal	Ν	(External) grid
D	axis, attenuation	HV	High-voltage winding (transformer)
el	Electric	a	Source a_(avis) parameter
ers	Equivalent, substitute	Ч	
erz	Generation	Q	Damper quadrature ax1s,
f	Field (excitation)		source
F	Fault	r	Rated
g	Mutual inductive or capacitive	rel	per unit
C	coupling	S	Self, stator, sub-conductor
G	Generator	S	Symmetrical components
h. i. j. v	Counting index	SG	Vector group
i	Internal parameter	Str	Phase
inst	Installed (nower)	Т	Turbine, transformer
K	Correction	LV	Low-voltage winding
k	Short-circuit		(transformer)
k. k3	3-ph. line-to-ground fault	V	Losses
1-1	1 ph line to ground fault	W	Active portion, resisting
кт 1-2	2 nh line to line foult	W	Characteristic (impedance)
к2 1-217	2-pii. Inte-to-line fault	zu	absorbed, input
KZE	2-pn. nne-to-ground fault		
K1N	Kinetic		

2 Fundamentals

2.1 Instantaneous Values and Phasor Representation

¹⁾ Stationary phasors are hereinafter called "phasors".

2.2 Passive Sign Convention (PSC) and Reference Direction of the Active and Reactive Power

PSC: Nominal direction convention for terminal voltage and current of an element		
Voltage, current, active/reactive power arrows point in the same direction for a two-terminal element in the PSC	$\underline{U} \xrightarrow{\underline{I}} P, Q$	
Voltage, current, active/reactive power arrows point in the same di- rection at each side for a four-ter- minal element in the PSC	$ \underbrace{I_{A}}_{P_{A},Q_{A}} \xrightarrow{P_{B},Q_{B}} \underbrace{I_{B}}_{U_{B}} $	

2.3 Relations Between Sinusoidal Voltages and Currents in the Time and Frequency Domain for Linear Elements

	$u(t) = \hat{u}\cos(\omega t + \varphi_{\rm u})$	Phasor diagram	Voltage and current as a function of time
	$i_{\rm R}(t) = \frac{u(t)}{R}$ $= \frac{\hat{u}}{R}\cos(\omega t + \varphi_{\rm u})$ $= \hat{i}_{\rm R}\cos(\omega t + \varphi_{\rm i})$	Im I_{R} $\varphi_{i} = \varphi_{u}$ $\varphi = 0$ Re	
	$i_{\rm L}(t) = \frac{1}{L} \int u(t) \mathrm{d}t$ $= \frac{\hat{u}}{\omega L} \sin(\omega t + \varphi_{\rm u})$ $= \hat{i}_{\rm L} \cos(\omega t + \varphi_{\rm u} - \frac{\pi}{2})$ $= \hat{i}_{\rm L} \cos(\omega t + \varphi_{\rm i})$	Im $\varphi_{u} \varphi = \frac{\pi}{2}$ $\varphi_{i} Re$ \underline{I}_{L}	$ \begin{array}{c} u \\ \varphi_u \\ \varphi_u \\ \varphi_v \\ \varphi_v \\ \psi_v \\ $
	$i_{c}(t) = C \frac{du(t)}{dt}$ $= -\hat{u}\omega C \sin(\omega t + \varphi_{u})$ $= \hat{i}_{c} \cos(\omega t + \varphi_{u} + \frac{\pi}{2})$ $= \hat{i}_{c} \cos(\omega t + \varphi_{i})$	$Im \qquad \varphi = -\frac{\pi}{2} \qquad U \qquad U \qquad \psi_{i} \qquad Re$	$\varphi = -\frac{\pi}{2} \qquad \qquad$
Phase shift $\varphi = \varphi_u - \varphi_i$ (Pointing from current to voltage)			

2.4 **Power in AC Circuits Using the PSC**

Instantaneous power $p(t)$		
Instantaneous power of a two-ter- minal (one-port) element with ter- minal voltage $u(t)$ and terminal cur- rent $i(t)$	$p(t) = u(t) \cdot i(t)$ = $U I (\cos \varphi + \cos (2\omega t + \varphi_{U} + \varphi_{I}))$ = $P + S \cos (2\omega t + \varphi_{U} + \varphi_{I})$ = $P (1 + \cos (2\omega t + \varphi_{U})) + Q \sin (2\omega t + \varphi_{U})$ = $p_{P}(t) + p_{Q}(t)$	
Complex apparent power \underline{S} , active power P and reactive power Q		
Power equation of a two-terminal (one-port) element with terminal voltage <u>U</u> and terminal current <u>I</u>	$\underline{S} = \underline{U} \underline{I}^* = U I e^{j(\phi_u - \phi_i)} = U I e^{j\varphi} = S e^{j\varphi}$ $= P + jQ = S(\cos\varphi + j\sin\varphi)$	
Active and reactive current	$\underline{I} = \frac{\underline{S}^*}{\underline{U}^*} = \frac{P - jQ}{U} e^{j\varphi_u} = (I_w + jI_b) e^{j\varphi_u}$ $I = \sqrt{I_w^2 + I_b^2}$	
Phasor diagram	$Im \qquad I_{w} > 0 \qquad U \qquad I_{\perp} \qquad Re \qquad I_{\perp} \qquad Re \qquad I_{\perp} \qquad I_{\perp}$	
Relation between active/reactive power and active/reactive currents	$P = U I_{w} = U I \cos \varphi$ $Q = -U I_{b} = -U I \sin \varphi$	
Active/displacement factor	$-1 \le \cos \varphi \le 1$	

Power conventions in the PSC (equal reference direction convention as in Section 2.2)		PSC vention	$P > 0 \rightarrow \text{Active power consumption}$ (consumer) $P < 0 \rightarrow \text{Active power output}$ (producer) $Q > 0 \rightarrow \text{Reactive power consumption}$ (inductive behavior) $Q < 0 \rightarrow \text{Reactive power output}$ (capacitive behavior)
$0 \le \varphi \le \frac{\pi}{2}$	<i>P</i> > 0	<i>Q</i> > 0	$\lim_{L} 0 \le \varphi \le \frac{\pi}{2}$
$-\frac{\pi}{2} \le \varphi \le 0$	<i>P</i> > 0	<i>Q</i> < 0	$\begin{array}{c} U \\ \psi \\ \psi \\ \psi \\ \chi \\ \psi \\ \chi \\ \chi \\ \chi \\ \chi \\ \chi$
$-\pi \le \varphi \le -\frac{\pi}{2}$	<i>P</i> < 0	<i>Q</i> < 0	$-\frac{\frac{n}{2} \le \varphi \le 0}{\frac{R}{2}} \qquad $
$\frac{\pi}{2} \le \varphi \le \pi$	<i>P</i> < 0	Q > 0	$-\pi \le \varphi \le -\frac{\pi}{2} \qquad \qquad \overline{2} \le \varphi \le \pi$

2.5 Impedance, Admittance and Apparent Power of Basic Elements Using the PSC

Impedance \underline{Z} (with resistance <i>R</i> and reactance <i>X</i>)				
$\underline{Z} = (+) \underbrace{\underline{U}}_{\underline{I}} = \frac{U}{I} e^{j(\varphi_u - \varphi_1)} = Z e^{j\varphi_z} = \operatorname{Re}(\underline{Z}) + j\operatorname{Im}(\underline{Z}) = Z (\cos\varphi_z + j\sin\varphi_z) = R + jX$				
$Z = \sqrt{R^2 + X^2} \text{ and}$	$Z = \sqrt{R^2 + X^2}$ and $\varphi_Z = \varphi_u - \varphi_i = \arctan \frac{X}{R}$ (for $R > 0$)			
Admittance \underline{Y} (wit	Admittance \underline{Y} (with conductance G and susceptance B)			
$\underline{Y} = (+)\frac{\underline{I}}{\underline{U}} = \frac{I}{U}e^{j(\varphi_{1}-\varphi_{u})} = Ye^{j\varphi_{Y}} = \operatorname{Re}(\underline{Y}) + j\operatorname{Im}(\underline{Y}) = Y(\cos\varphi_{Y} + j\sin\varphi_{Y}) = G + jB$				
$Y = \sqrt{G^2 + B^2}$ and $\varphi_{\rm Y} = -\varphi_{\rm Z} = \varphi_{\rm i} - \varphi_{\rm u} = \arctan \frac{B}{G}$ (for $G > 0$)				
Element	$\underline{Z} = R + jX$	$\underline{Y} = G + \mathbf{j}B$	$\underline{S} = P + jQ = \underline{U} \underline{I}^*$	
Resistor	R	$\frac{1}{R} = G$	$RI^2 = GU^2 = UI_{\rm w}$	
Inductor	$j\omega L = jX_L$	$\frac{1}{j\omega L} = -jB_{\rm L}$	$jX_{\rm L}I^2 = jB_{\rm L}U^2 = -jUI_{\rm b}$	
Capacitor	$\frac{1}{j\omega C} = -jX_{\rm C}$	$j\omega C = jB_{C}$	$-jX_{\rm C}I^2 = -jB_{\rm C}U^2 = -jUI_{\rm b}$	

Harmonics		
RMS value of a signal subjected to harmonics	$G = \sqrt{G_1^2 + G_2^2 + \ldots + G_{\infty}^2} = \sqrt{\sum_{h=1}^{\infty} G_h^2}$	
h = 1: Fundamental component with $h > 1$: Order number of harmonic with	frequency f_1 th frequency $f_h = h \cdot f_1$	
Fundamental factor	$g = \frac{G_1}{\sqrt{G_1^2 + G_2^2 + \ldots + G_{\infty}^2}} = \frac{G_1}{G}$	
Total harmonic distortion (THD)	$d = \frac{\sqrt{G_2^2 + \ldots + G_{\infty}^2}}{\sqrt{G_1^2 + G_2^2 + \ldots + G_{\infty}^2}} = \frac{\sqrt{G_2^2 + \ldots + G_{\infty}^2}}{G}$	
Relation between g and d	$g^2 + d^2 = 1$	
Apparent power <i>S</i> , fundamental apparent power S_1 and distortion power <i>D</i>	$S^{2} = U^{2}I^{2} = \sum_{h=1}^{\infty} U_{h}^{2} \sum_{h=1}^{\infty} I_{h}^{2}$ = $g_{U}^{2}g_{I}^{2}U^{2}I^{2} + (g_{U}^{2}d_{I}^{2} + g_{I}^{2}d_{U}^{2} + d_{U}^{2}d_{I}^{2})U^{2}I^{2}$ = $S_{I}^{2} + D^{2} = P_{I}^{2} + Q_{I}^{2} + D^{2}$	
Fundamental active/reactive power	$\underline{S}_{1} = \underline{U}_{1}\underline{I}_{1}^{*} = P_{1} + jQ_{1} = U_{1}I_{1}\left(\cos\varphi_{1} + j\sin\varphi_{1}\right)$	
Relation between apparent, active, reactive and distortion power	p_1	
Power factor (see active/displacement factor in Sec- tion 2.4)	$\lambda = \frac{ P_1 }{S} = \frac{U_1 I_1 \cos \varphi_1 }{U I} = g_U g_1 \cos \varphi_1 \le 1$	

2.7 Multi-Port Theory

2.7.1 One-Port Networks

Voltage source equivalent circuit $\underline{U} = \underline{Z}_{i}\underline{I} + \underline{U}_{q}$	$\underline{U}_{q} \bigvee \underbrace{\underline{U}_{i}}_{q} \underbrace{\underline{U}_{i}}_{q}$
Current source equivalent circuit $\underline{I} = \underline{Y}_{i} \underline{U} + \underline{I}_{q}$	$\underline{I}_{q} \bigvee \underbrace{\underline{Y}_{i}}_{I} \bigvee \underbrace{\underline{V}}_{i} \bigvee \underbrace{\underline{U}}_{I}$
Open-circuit operation (No-load operation)	$\underline{U} = \underline{U}_{\ell} = \underline{U}_{q} \text{ resp. } \underline{U} = \underline{U}_{\ell} = -\frac{1}{\underline{Y}_{i}} \underline{I}_{q}$
Short-circuit operation	$\underline{I} = \underline{I}_{k} = -\frac{1}{\underline{Z}_{i}} \underline{U}_{q} \text{ resp. } \underline{I} = \underline{I}_{k} = \underline{I}_{q}$
Conversion (identical terminal behavior)	$\underline{Z}_{i} = -\frac{\underline{U}_{q}}{\underline{I}_{q}} = -\frac{\underline{U}_{\ell}}{\underline{I}_{k}} \text{ resp. } \underline{U}_{q} = -\underline{Z}_{i}\underline{I}_{q}$

2.7.2 Two-Port Networks

Impedance representation		
T-equivalent circuit	$\underbrace{\underline{U}}_{A} \qquad \underbrace{\underline{I}}_{A} \qquad \underbrace{\underline{Z}}_{AA} - \underbrace{\underline{Z}}_{AB} \qquad \underbrace{\underline{Z}}_{BB} - \underbrace{\underline{Z}}_{AB} \qquad \underbrace{\underline{I}}_{B} \qquad \underbrace{\underline{B}}_{B} \qquad \underbrace{\underline{I}}_{B} \qquad \underbrace{\underline{I}}_{B} \qquad \underbrace{\underline{U}}_{B} \ \underbrace{\underline{U}}_{B$	
Two-port equation (Z-characteristic)	$\begin{bmatrix} \underline{U}_{A} \\ \underline{U}_{B} \end{bmatrix} = \begin{bmatrix} \underline{Z}_{AA} = \frac{\underline{U}_{A}}{\underline{l}_{A}} \Big _{\underline{l}_{B}=0} & \underline{Z}_{AB} = \frac{\underline{U}_{A}}{\underline{l}_{B}} \Big _{\underline{l}_{A}=0} \\ \underline{Z}_{BA} = \frac{\underline{U}_{B}}{\underline{l}_{A}} \Big _{\underline{l}_{B}=0} & \underline{Z}_{BB} = \frac{\underline{U}_{B}}{\underline{l}_{B}} \Big _{\underline{l}_{A}=0} \end{bmatrix} \begin{bmatrix} \underline{I}_{A} \\ \underline{I}_{B} \end{bmatrix}$ $\underline{\boldsymbol{u}} = \underline{\boldsymbol{Z}} \ \underline{\boldsymbol{i}}$	

Admittance representation		
Π-equivalent circuit	$\underline{U}_{A} \underbrace{I_{A}}_{A} \underbrace{-\underline{Y}_{AB}}_{A} \underbrace{I_{B}}_{B} \underbrace{I_{B}}_{B} \underbrace{U_{B}}_{A} $	
Two-port equation (Y-characteristic)	$\begin{bmatrix} \underline{I}_{A} \\ \underline{I}_{B} \end{bmatrix} = \begin{bmatrix} \underline{Y}_{AA} = \frac{\underline{I}_{A}}{\underline{U}_{A}} \Big _{\underline{U}_{B}=0} & \underline{Y}_{AB} = \frac{\underline{I}_{A}}{\underline{U}_{B}} \Big _{\underline{U}_{A}=0} \\ \underline{Y}_{BA} = \frac{\underline{I}_{B}}{\underline{U}_{A}} \Big _{\underline{U}_{B}=0} & \underline{Y}_{BB} = \frac{\underline{I}_{B}}{\underline{U}_{B}} \Big _{\underline{U}_{A}=0} \end{bmatrix} \begin{bmatrix} \underline{U}_{A} \\ \underline{U}_{B} \end{bmatrix}$ $\underline{\boldsymbol{i}} = \underline{\boldsymbol{Y}} \ \underline{\boldsymbol{u}}$	
Iterative representation (cascade or tr	ansmission representation)	
Iterative form	$ \underbrace{\underline{U}}_{A} \qquad \underbrace{\underline{I}}_{BA} \qquad \underbrace{\underline{I}}_{BB} \qquad \underbrace{\underline{I}}_{BB} \qquad \underbrace{\underline{U}}_{BB} \ \underbrace{U}_{BB} \ \underbrace{\underline{U}}_{BB} \ \underbrace{U}_{BB} \ \underbrace$	
Terminal quantities of side A in dependence of side B (transmission characteristic)	$\begin{bmatrix} \underline{U}_{A} \\ \underline{I}_{A} \end{bmatrix} = \begin{bmatrix} \underline{A}_{AA} = \frac{\underline{U}_{A}}{\underline{U}_{B}} \Big _{\underline{I}_{B}=0} & \underline{A}_{AB} = \frac{\underline{U}_{A}}{\underline{I}_{B}} \Big _{\underline{U}_{B}=0} \\ \underline{A}_{BA} = \frac{\underline{I}_{A}}{\underline{U}_{B}} \Big _{\underline{I}_{B}=0} & \underline{A}_{BB} = \frac{\underline{I}_{A}}{\underline{I}_{B}} \Big _{\underline{U}_{B}=0} \end{bmatrix} \begin{bmatrix} \underline{U}_{B} \\ \underline{I}_{B} \end{bmatrix} \\ \underline{z}_{A} = \underline{A}_{AB} \ \underline{z}_{B}$	
Cascade connection of two-port netw	vorks	
\underline{U}_{A} \underline{U}_{A} \underline{U}_{A} \underline{I}_{A} \underline{A}_{BA} \underline{A}_{BA} \underline{A}_{BB} \underline{A}_{BA} \underline{A}_{BB} \underline{A}_{AB}	$\underline{\underline{I}}_{B}^{\prime} = -\underline{\underline{I}}_{B} = \underline{\underline{I}}_{C}$ $\underline{\underline{U}}_{B} = \underline{\underline{U}}_{C}$ $\underbrace{\underline{\underline{A}}_{CC} \underline{\underline{A}}_{CD}}_{=\underline{\underline{A}}_{CD}}$ $\underbrace{\underline{\underline{U}}_{D}}_{=\underline{\underline{A}}_{CD}}$	
Terminal quantities of side A in dependence of side D	$\underline{z}_{A} = \underline{A}'_{AB} \underline{z}'_{B} = \underline{A}'_{AB} \underline{A}_{CD} \underline{z}_{D}$ For the cascaded connection, the terminal values of side B are expressed in the ASC (primed variables)	
Inversion		
Inverse of a 2×2 matrix ($det(A) = A_{AA}A_{BB} - A_{AB}A_{BA}$)	$\boldsymbol{A}^{-1} = \frac{\operatorname{adj}(\boldsymbol{A})}{\operatorname{det}(\boldsymbol{A})} = \frac{1}{\operatorname{det}(\boldsymbol{A})} \cdot \begin{bmatrix} A_{\mathrm{BB}} & -A_{\mathrm{AB}} \\ -A_{\mathrm{BA}} & A_{\mathrm{AA}} \end{bmatrix}$	
Losses and reactive power requirement of a two-port network		
Losses and reactive power require- ment	$\underline{S}_{\rm V} = P_{\rm V} + jQ_{\rm V} = \underline{S}_{\rm A} + \underline{S}_{\rm B} = \underline{U}_{\rm A}\underline{I}_{\rm A}^* + \underline{U}_{\rm B}\underline{I}_{\rm B}^*$	

Designation	Equivalent circuit	Iterative matrix <u>A</u>
Series impedance	<u>∠</u> ~	$\begin{bmatrix} 1 & -\underline{Z} \\ 0 & -1 \end{bmatrix}$
Shunt admittance	$\underline{\boldsymbol{\mathcal{I}}} = \underline{\boldsymbol{Z}}^{-1}$	$\begin{bmatrix} 1 & 0 \\ \underline{Y} & -1 \end{bmatrix}$
Ideal transformer		$\begin{bmatrix} \underline{\ddot{u}} & 0\\ 0 & -1/\underline{\ddot{u}}^* \end{bmatrix}$
T-equivalent circuit	$\overbrace{\mathbf{Z}_{1}} \underbrace{\underline{Z}_{2}}_{\mathbf{Z}_{2}} \\ \overbrace{\mathbf{Z}_{3}} \underbrace{\underline{Z}_{2}}_{\mathbf{Z}_{3}} \\ \overbrace{\mathbf{Z}_{3}} \underbrace{\underline{Y}_{3}}_{\mathbf{Z}_{3}} = \frac{1}{\underline{Z}_{3}}$	$\begin{bmatrix} \underline{Z}_1 \underline{Y}_3 + 1 & -(\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_1 \underline{Z}_2 \underline{Y}_3) \\ \underline{Y}_3 & -(\underline{Z}_2 \underline{Y}_3 + 1) \end{bmatrix}$
П-equivalent circuit	$\underline{Z_3}$ $\underline{Z_3}$ $\underline{Z_1}$ $\underline{Y_1} = \frac{1}{\underline{Z_1}}$ $\underline{Y_2} = \frac{1}{\underline{Z_2}}$	$\begin{bmatrix} \underline{Z}_3 \underline{Y}_2 + 1 & -\underline{Z}_3 \\ \underline{Y}_1 + \underline{Y}_2 + \underline{Y}_1 \underline{Y}_2 \underline{Z}_3 & -(\underline{Z}_3 \underline{Y}_1 + 1) \end{bmatrix}$
Uniform transmission line (see distributed parameters in 8.3)	oo	$\begin{bmatrix} \cosh(\underline{\gamma}l) & -\underline{Z}_{w}\sinh(\underline{\gamma}l) \\ \underline{Y}_{w}\sinh(\underline{\gamma}l) & -\cosh(\underline{\gamma}l) \end{bmatrix}$

2.7.3 Special Two-Port Networks and Their Equivalent Circuits

3 Three-Phase System

Three-phase system with two loads (wye connection and delta connection) wye connection delta connection a- U_{ca} bc- I_{c} $\underline{U}_{a} \qquad \underline{U}_{b} \qquad \underline{U}_{c} \qquad \underline{U}_{\nu M} \qquad \boxed{\begin{array}{c} \underline{I}_{a} \\ \underline{I}_{a} \\ \underline{I}_{a} \\ \underline{I}_{b} \\ \underline{I}_{a} \\ \underline{I}_{b} \\ \underline{I}_{a} \\ \underline{I}_{b} \\ \underline{I}_{c} \\ \underline{I}_{c} \\ \underline{I}_{v} \\$ <u>Y</u>_{ab} $\left| \underline{U}_{\mathrm{ME}}, \underline{I}_{\mathrm{ME}} \right|$ $\underline{U}_{\nu\mu\text{Str}}, \underline{I}_{\nu\mu\text{Str}}$ $\nu, \mu = a, b, c$ E - \underline{I}_{ν} Line current Line-to-line voltage \underline{U}_{vu} \underline{U}_{ν} Line-to-ground voltage \underline{U}_{vM} Line-to-neutral voltage \underline{I}_{vStr} , $\underline{I}_{v\mu Str}$ Phase current \underline{U}_{vStr} , \underline{U}_{vuStr} Phase voltage $U_{\rm ME}$ Neutral-to-ground voltage Neutral(-to-ground) current $I_{\rm ME}$ Wye connection Y Relation between phase, neutral and line currents and voltages: $\begin{bmatrix} \underline{U}_{ab} \\ \underline{U}_{bc} \\ \underline{U}_{ca} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \underline{U}_{a} \\ \underline{U}_{b} \\ \underline{U}_{c} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \underline{U}_{aStr} \\ \underline{U}_{bStr} \\ \underline{U}_{cStr} \end{bmatrix} \text{ and } \begin{bmatrix} \underline{I}_{a} \\ \underline{I}_{b} \\ \underline{I}_{c} \end{bmatrix} = \begin{bmatrix} \underline{I}_{aStr} \\ \underline{I}_{bStr} \\ \underline{I}_{cStr} \end{bmatrix}$ and $\underline{U}_{\nu} = \underline{U}_{\nu\text{Str}} + \underline{U}_{\text{ME}}$, $\underline{U}_{\text{ME}} = \underline{Z}_{\text{ME}} \underline{I}_{\text{ME}}$ and $\underline{I}_{\text{ME}} = \sum_{\nu} \underline{I}_{\nu} = \sum_{\nu} \underline{I}_{\nu\text{Str}}$ for $\nu = a, b, c$ Delta connection Δ Relation between phase and line currents and voltages: $\begin{bmatrix} \underline{I}_{a} \\ \underline{I}_{b} \\ \underline{I}_{c} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \underline{I}_{abStr} \\ \underline{I}_{bcStr} \\ \underline{I}_{caStr} \end{bmatrix} \text{ and } \begin{bmatrix} \underline{U}_{ab} \\ \underline{U}_{bc} \\ \underline{U}_{ca} \end{bmatrix} = \begin{bmatrix} \underline{U}_{abStr} \\ \underline{U}_{bcStr} \\ \underline{U}_{caStr} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \underline{U}_{a} \\ \underline{U}_{b} \\ \underline{U}_{c} \end{bmatrix}$

3.1 Wye Connection and Delta Connection

3.2 Voltages and Currents in the Three-Phase System

²⁾ The connection between the phases due to the mutual impedances is neglected for \underline{Z}_{B} . Taking into account the mutual impedances requires \underline{Z}_{B} to be build up in analogy to \underline{Z} .

3.3 Balanced Three-Phase System

3.3.1 Conditions for a balanced three-phase system

a) Geometric symmetry (symmetrical structure of the network components)		
Impedance matrix (see Section 3.2):		
$\underline{\mathbf{Z}} = \begin{bmatrix} \underline{Z}_{aa} & \underline{Z}_{ab} & \underline{Z}_{ac} \\ \underline{Z}_{ba} & \underline{Z}_{bb} & \underline{Z}_{bc} \\ \underline{Z}_{ca} & \underline{Z}_{cb} & \underline{Z}_{cc} \end{bmatrix} = \begin{bmatrix} \underline{Z}_{s} & \underline{Z}_{g} & \underline{Z}_{g} \\ \underline{Z}_{g} & \underline{Z}_{s} & \underline{Z}_{g} \\ \underline{Z}_{g} & \underline{Z}_{g} & \underline{Z}_{g} \end{bmatrix}$	including $\underline{Z}_{aa} = \underline{Z}_{bb} = \underline{Z}_{cc} = \underline{Z}_{s}$ and $\underline{Z}_{ab} = \underline{Z}_{ba} = \underline{Z}_{bc} = \underline{Z}_{cb} = \underline{Z}_{ac} = \underline{Z}_{g}$	
Admittance matrix (see Section 3.2):		
$\underline{Y} = \begin{bmatrix} \underline{Y}_{aE} + \underline{Y}_{ab} + \underline{Y}_{ac} & -\underline{Y}_{ab} & -\underline{Y}_{ac} \\ -\underline{Y}_{ba} & \underline{Y}_{bE} + \underline{Y}_{ba} + \underline{Y}_{bc} & -\underline{Y}_{bc} \\ -\underline{Y}_{ca} & -\underline{Y}_{cb} & \underline{Y}_{cE} + \underline{Y}_{ca} + \underline{Y}_{cb} \end{bmatrix} = \begin{bmatrix} \underline{Y}_{s} & \underline{Y}_{g} & \underline{Y}_{g} \\ \underline{Y}_{g} & \underline{Y}_{s} & \underline{Y}_{g} \\ \underline{Y}_{g} & \underline{Y}_{g} & \underline{Y}_{s} \end{bmatrix} \text{ including}$ $\underline{Y}_{aE} = \underline{Y}_{bE} = \underline{Y}_{cE} = \underline{Y}_{E}, \ \underline{Y}_{ab} = \underline{Y}_{ba} = \underline{Y}_{bc} = \underline{Y}_{cb} = \underline{Y}_{ac} = \underline{Y}_{ca} = \underline{Y} = -\underline{Y}_{g} \text{ and } \underline{Y}_{E} + 2\underline{Y} = \underline{Y}_{s}$		
b) Electric symmetry (symmetrical (balanced) sources and loads)		
Symmetrical sources $\underline{U}_{qa} + \underline{U}_{qb} + \underline{U}_{qc} = \underline{U}_{qa} + \underline{a}^2 \underline{U}_{qa} + \underline{a} \underline{U}_{qa} = 0$		
Symmetrical loads $\underline{Z}_{aB} = \underline{Z}_{bB} = \underline{Z}_{cB} = \underline{Z}_{B}$ (see footnote 1)		
From a) and b) follows: Symmetrical currents and voltages at each location <i>x</i>		
$\underline{I}_{ax} + \underline{I}_{bx} + \underline{I}_{cx} = \underline{I}_{ax}(1 + \underline{a}^2 + \underline{a}) = 0 \text{ and } \underline{U}_{ax} + \underline{U}_{bx} + \underline{U}_{cx} = \underline{U}_{ax}(1 + \underline{a}^2 + \underline{a}) = 0$		

3.3.2 Single-Phase Equivalent Circuit

Assuming a balanced three-phase system as described in 3.3.1, the general voltage and current equation systems from 3.2 can be transferred to decoupled equation systems:

$$\begin{bmatrix} \underline{U}_{qa} \\ \underline{U}_{qb} \\ \underline{U}_{qc} \end{bmatrix} + \begin{bmatrix} \underline{Z}_{s} - \underline{Z}_{g} & 0 & 0 \\ 0 & \underline{Z}_{s} - \underline{Z}_{g} & 0 \\ 0 & 0 & \underline{Z}_{s} - \underline{Z}_{g} \end{bmatrix} \begin{bmatrix} \underline{I}_{aA} \\ \underline{I}_{bA} \\ \underline{I}_{cA} \end{bmatrix} = \begin{bmatrix} \underline{U}_{aB} \\ \underline{U}_{bB} \\ \underline{U}_{cB} \end{bmatrix} = \begin{bmatrix} \underline{Z}_{B} & 0 & 0 \\ 0 & \underline{Z}_{B} & 0 \\ 0 & 0 & \underline{Z}_{B} \end{bmatrix} \begin{bmatrix} \underline{I}_{aB} \\ \underline{I}_{bB} \\ \underline{I}_{cB} \end{bmatrix} \text{ and }$$
$$\begin{bmatrix} \underline{I}_{aA} \\ \underline{I}_{bA} \\ \underline{I}_{cA} \end{bmatrix} + \begin{bmatrix} \underline{I}_{aB} \\ \underline{I}_{bB} \\ \underline{I}_{cB} \end{bmatrix} + \begin{bmatrix} \underline{Y}_{s} - \underline{Y}_{g} & 0 & 0 \\ 0 & \underline{Y}_{s} - \underline{Y}_{g} & 0 \\ 0 & 0 & \underline{Y}_{s} - \underline{Y}_{g} \end{bmatrix} \begin{bmatrix} \underline{U}_{aB} \\ \underline{U}_{bB} \\ \underline{U}_{cB} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ with } \frac{\underline{U}_{ME} = 0 \text{ and } \underline{I}_{ME} = 0 \\ \text{ as well as } \underline{u}_{A} = \underline{u}_{q} \end{bmatrix}$$

Single-phase equivalent circuit for the reference phase a of the balanced three-phase system from Section 3.2

The single-phase equivalent circuit for the line a of the balanced three-phase system is identical to the positive-sequence equivalent circuit (index 1) (see Section 3.5.2).

3.3.3 Relations Between Phase, Neutral and Line Voltages and Currents

3.3.4 Phasor Diagram and Three-Phase Apparent Power

3.4 Wye-Delta Transformation

Transformations between delta and wye connections ³⁾		
Wye-delta transformation $(Y \rightarrow \Delta)$	$\underline{Y}_{ab} = \frac{\underline{Y}_{a} \underline{Y}_{b}}{\underline{Y}_{\Sigma}}, \ \underline{Y}_{bc} = \frac{\underline{Y}_{b} \underline{Y}_{c}}{\underline{Y}_{\Sigma}}, \ \underline{Y}_{ca} = \frac{\underline{Y}_{c} \underline{Y}_{a}}{\underline{Y}_{\Sigma}}$ including $\underline{Y}_{\Sigma} = \underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}$	
Delta-wye transformation $(\Delta \rightarrow Y)$	$\underline{Z}_{a} = \frac{\underline{Z}_{ab} \underline{Z}_{ca}}{\underline{Z}_{\Sigma}}, \ \underline{Z}_{b} = \frac{\underline{Z}_{ab} \underline{Z}_{bc}}{\underline{Z}_{\Sigma}}, \ \underline{Z}_{c} = \frac{\underline{Z}_{ac} \underline{Z}_{bc}}{\underline{Z}_{\Sigma}}$ including $\underline{Z}_{\Sigma} = \underline{Z}_{ab} + \underline{Z}_{bc} + \underline{Z}_{ca}$	
Transformation for the balanced three-phase system (see Section 3.3)		
$\underline{Y}_{\nu} = \underline{Y}_{Y} \text{ resp. } \underline{Z}_{\nu\mu} = \underline{Z}_{\Delta}$ with $\nu, \mu = a, b, c$	$\underline{Y}_{\nu\mu} = \frac{\underline{Y}_{Y}}{3}$ for $Y \rightarrow \Delta$ and $\underline{Z}_{\nu} = \frac{\underline{Z}_{\Delta}}{3}$ for $\Delta \rightarrow Y$	

³⁾ Requirement: No grounding of the neutral point of the wye circuit ($\underline{Y}_{ME} = 0$ resp. $|\underline{Z}_{ME}| \rightarrow \infty$).

3.5 Unbalanced Three-Phase System

3.5.1 Symmetrical Components

Symmetrical components (SC) of an unbalanced three-phase system	positive sequence (1) negative sequence (2) zero sequence (0) G_{c1} G_{a1} G_{a2} G_{a2} G_{a0} G_{b0} G_{c0} G_{b1} G_{c2}
Phase a as reference phase	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Decomposition of quantities into symmetrical components	$\underline{\boldsymbol{g}} = \begin{bmatrix} \underline{G}_{a} \\ \underline{G}_{b} \\ \underline{G}_{c} \end{bmatrix} = \begin{bmatrix} \underline{G}_{a1} + \underline{G}_{a2} + \underline{G}_{a0} \\ \underline{G}_{b1} + \underline{G}_{b2} + \underline{G}_{b0} \\ \underline{G}_{c1} + \underline{G}_{c2} + \underline{G}_{c0} \end{bmatrix}$
Transformation from phase quanti- ties a, b, c to symmetrical compo- nents 1, 2, 0 and its inverse trans- formation	$\mathbf{g} = \begin{bmatrix} \underline{G}_{a} \\ \underline{G}_{b} \\ \underline{G}_{c} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ \underline{a}^{2} & \underline{a} & 1 \\ \underline{a} & \underline{a}^{2} & 1 \end{bmatrix} \begin{bmatrix} \underline{G}_{1} \\ \underline{G}_{2} \\ \underline{G}_{0} \end{bmatrix} = \underline{T}_{S} \underline{g}_{S}$ $\mathbf{g}_{S} = \begin{bmatrix} \underline{G}_{1} \\ \underline{G}_{2} \\ \underline{G}_{0} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & \underline{a} & \underline{a}^{2} \\ 1 & \underline{a}^{2} & \underline{a} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \underline{G}_{a} \\ \underline{G}_{b} \\ \underline{G}_{c} \end{bmatrix} = \underline{T}_{S}^{-1} \underline{g}$
Phasor diagram of unbalanced phase quantities and their composi- tion in symmetrical components	$ \underbrace{\underline{G}_{c2}}_{\underline{G}_{c1}} \\ \underbrace{\underline{G}_{c}}_{\underline{G}_{c0}} \\ \underbrace{\underline{G}_{a}}_{\underline{G}_{a0}} \\ \underbrace{\underline{G}_{b0}}_{\underline{G}_{a1}} \\ \underbrace{\underline{G}_{a2}}_{\underline{G}_{a2}} \\ \underbrace{\underline{G}_{b1}}_{\underline{G}_{a1}} \\ \underbrace{\underline{G}_{a2}}_{\underline{G}_{a2}} \\ \underbrace{\underline{G}_{b2}}_{\underline{G}_{b1}} \\ \underbrace{\underline{G}_{b2}}_{\underline{G}_{b1}} \\ \underbrace{\underline{G}_{b2}}_{\underline{G}_{b1}} \\ \underbrace{\underline{G}_{b2}}_{\underline{G}_{b1}} \\ \underline{G}_{b2}} \\ \underline{G}_{b2} \\ \underline{G}_{b1} \\ \underline{G}_{b2} \\ \underline{G}_{b1} \\ \underline{G}_{b1} \\ \underline{G}_{b2} \\ \underline{G}_{b1} \\ \underline{G}_{b2} \\ \underline{G}_{b1} \\ \underline{G}_{b2} \\ \underline{G}_{b2} \\ \underline{G}_{b2} \\ \underline{G}_{b2} \\ \underline{G}_{b2} \\ \underline{G}_{b2} \\ \underline{G}_{b2} \\ \underline{G}_{b2} \\ $
Apparent power in symmetrical components	$\underline{S}_{\mathrm{S}} = \underline{\boldsymbol{u}}_{\mathrm{S}}^{\mathrm{T}} \underline{\boldsymbol{i}}_{\mathrm{S}}^{*} = \underline{U}_{1} \underline{I}_{1}^{*} + \underline{U}_{2} \underline{I}_{2}^{*} + \underline{U}_{0} \underline{I}_{0}^{*}$
Apparent power in phase quantities	$\underline{S} = \underline{\boldsymbol{u}}^{\mathrm{T}} \underline{\boldsymbol{i}}^{*} = \underline{U}_{\mathrm{a}} \underline{I}_{\mathrm{a}}^{*} + \underline{U}_{\mathrm{b}} \underline{I}_{\mathrm{b}}^{*} + \underline{U}_{\mathrm{c}} \underline{I}_{\mathrm{c}}^{*}$
Transformation to symmetrical components is variant in terms of apparent power	$\underline{S} = \underline{\boldsymbol{u}}^{\mathrm{T}} \underline{\boldsymbol{i}}^{*} = (\underline{\boldsymbol{T}}_{\mathrm{S}} \underline{\boldsymbol{u}}_{\mathrm{S}})^{\mathrm{T}} (\underline{\boldsymbol{T}}_{\mathrm{S}} \underline{\boldsymbol{i}}_{\mathrm{S}})^{*} = \underline{\boldsymbol{u}}_{\mathrm{S}}^{\mathrm{T}} \underline{\boldsymbol{T}}_{\mathrm{S}}^{\mathrm{T}} \underline{\boldsymbol{T}}_{\mathrm{S}}^{*} \underline{\boldsymbol{i}}_{\mathrm{S}}^{*}$ $= 3\underline{\boldsymbol{u}}_{\mathrm{S}}^{\mathrm{T}} \underline{\boldsymbol{i}}_{\mathrm{S}}^{*} = 3\underline{S}_{\mathrm{S}}$

3.5.2 Equivalent Circuits in Symmetrical Components

Voltage equations from 3.2 in symmetry	etrical components (decoupled):
$\begin{bmatrix} 0 \\ 0 \\ 3\underline{Z}_{ME} \end{bmatrix} \begin{bmatrix} \underline{I}_{1A} \\ \underline{I}_{2A} \\ \underline{I}_{0A} \end{bmatrix} + \begin{bmatrix} \underline{U}_{q1} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \underline{Z}_{1} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \underline{Z}_{1} \\ \underline{U}_{1A} \\ \underline{I}_{2A} \\ \underline{I}_{2A} \\ \underline{I}_{2A} \\ \underline{I}_{0B} \end{bmatrix} + \begin{bmatrix} \underline{I}_{1B} \\ \underline{I}_{2B} \\ \underline{I}_{0B} \end{bmatrix} + \begin{bmatrix} \underline{Y}_{1} \\ \underline{Y}_{2} \\ \underline{Y}_{0} \end{bmatrix} \begin{bmatrix} \underline{U}_{1B} \\ \underline{U}_{2B} \\ \underline{U}_{0B} \end{bmatrix}$	$\underline{Z}_{2} \underbrace{Z}_{0} \begin{bmatrix} \underline{I}_{1A} \\ \underline{I}_{2A} \\ \underline{I}_{0A} \end{bmatrix} = \begin{bmatrix} \underline{U}_{1B} \\ \underline{U}_{2B} \\ \underline{U}_{0B} \end{bmatrix} = \begin{bmatrix} \underline{Z}_{1B} & 0 & 0 \\ 0 & \underline{Z}_{2B} & 0 \\ 0 & 0 & \underline{Z}_{0B} \end{bmatrix} \begin{bmatrix} \underline{I}_{1B} \\ \underline{I}_{2B} \\ \underline{I}_{0B} \end{bmatrix}$ entrical components (decoupled): $= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ with } \begin{bmatrix} \underline{U}_{1A} \\ \underline{U}_{2A} \\ U_{0A} \end{bmatrix} = \begin{bmatrix} \underline{U}_{q1} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 3Z_{ME} I_{0A} \\ 3Z_{ME} I_{0A} \end{bmatrix}$
Positive-sequence equivalent circuit:	
$\underline{Z}_1 = \underline{Z}_s - \underline{Z}_g$	$\underline{I}_{1A} A \underline{Z}_1 = \underline{Z}_s - \underline{Z}_g B \underline{I}_{1B}$
$\underline{Z}_{1B} = \underline{Z}_{B}$	
$\underline{Y}_{1} = \underline{Y}_{s} - \underline{Y}_{g} = \underline{Y}_{E} + 3\underline{Y}$	U_{1} U_{1} $Y_{1} = Y_{s} - Y_{s}$ U_{1} U_{1} Z_{R}
$\underline{U}_{q1} = \underline{U}_{qa} = \underline{U}_{q}$	
(compare to single-phase equivalent circuit of the symmetrical 3-phase system in 3.3.1)	
Negative-sequence equivalent circuit:	$\underline{I}_{2A} \underline{A} \underline{Z}_2 = \underline{Z}_s - \underline{Z}_g \underline{B} \underline{I}_{2B}$
$\underline{Z}_2 = \underline{Z}_1 = \underline{Z}_s - \underline{Z}_g$	
$\underline{Z}_{2B} = \underline{Z}_{1B} = \underline{Z}_{B}$	$\underline{\underline{U}}_{2A} \qquad \underline{\underline{Y}}_{2} = \underline{\underline{Y}}_{s} - \underline{\underline{Y}}_{g} \qquad \mathbf{\underline{2}} \qquad \underline{\underline{U}}_{2B} \qquad \mathbf{\underline{2}} \qquad \underline{\underline{Z}}_{B}$
$\underline{Y}_2 = \underline{Y}_1 = \underline{Y}_s - \underline{Y}_g = \underline{Y}_E + 3\underline{Y}$	
Zero-sequence equivalent circuit: $\underline{Z}_0 = \underline{Z}_s + 2\underline{Z}_g$ $\underline{Z}_{0B} = \underline{Z}_B$	$U = \frac{I_{0A} A}{I_{0}} = \underline{Z}_{s} + 2\underline{Z}_{g} B \underline{I}_{0B}$
$\underline{Y}_0 = \underline{Y}_s + 2\underline{Y}_g = \underline{Y}_E$	$ \underbrace{\begin{array}{c} \underbrace{}_{ME} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

The neutral-to-ground impedance \underline{Z}_{ME} affects only the zero-sequence system. The neutral-to-ground voltage is: $\underline{U}_{ME} = 3\underline{Z}_{ME}\underline{I}_{0A}$

For the balanced three-phase system, the following applies:

The component systems are decoupled and the negative- and zero-sequence equivalent circuits are passive networks. Thus, the balanced three-system can be described by the positive-sequence equivalent circuit (see 3.3.1).

For the unbalanced three-phase system, the following applies:

As a result of unbalanced faults, the equivalent circuits of the symmetrical components are coupled at the fault location (see 3.5.3) The structure of coupling follows from three fault conditions, which have to be transferred to symmetrical components.

Fault	Fault conditions				Intercon-
type	Three-pl	nase system	Symmetrical components (SC)		the SC
a b c E	$\underline{\underline{U}}_{a} - \underline{\underline{U}}_{b} = 0$ $\underline{\underline{U}}_{b} - \underline{\underline{U}}_{c} = 0$ $$	$\underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0$	$\underline{\underline{U}}_1 = 0$ $\underline{\underline{U}}_2 = 0$	$\underline{I}_0 = 0$	$01 \bigcirc 1$ $02 \bigcirc 1$ $00 \bigcirc 1$
a b c E	$\begin{array}{c} \underline{U}_{a} = 0 & & \\ \underline{U}_{b} = 0 & & \\ \underline{U}_{c} = 0 & & \\ \end{array}$		$U_{1} = 0$ $U_{2} = 0$ $U_{0} = 0$		
a c E	<u>U</u> _a = 0	$\underline{\underline{I}}_{b} = 0$ $\underline{\underline{I}}_{c} = 0$	$\underline{U}_1 + \underline{U}_2 + \underline{U}_0 = 0$	$\underline{\underline{I}}_{2} = \underline{\underline{I}}_{1}$ $\underline{\underline{I}}_{0} = \underline{\underline{I}}_{2}$	
a c E	$\underbrace{\underline{U}}_{b} - \underline{U}_{c} = 0$	$\underline{\underline{I}}_{a} = 0$ $\underline{\underline{I}}_{b} + \underline{\underline{I}}_{c} = 0$ $$	$\underline{\underline{U}}_{2} = \underline{\underline{U}}_{1}$	$\underline{I}_1 + \underline{I}_2 = 0$ $\underline{I}_0 = 0$ $$	
a c E	$\underline{\underline{U}}_{b} = 0$ $\underline{\underline{U}}_{c} = 0$	<u>I_a</u> = 0	$\underline{\underline{U}}_{2} = \underline{\underline{U}}_{1}$ $\underline{\underline{U}}_{0} = \underline{\underline{U}}_{2}$	$\underline{I}_1 + \underline{I}_2 + \underline{I}_0 = 0$	
$ \begin{array}{c} a \\ b \\ c \\ \end{array} \qquad \leftarrow \\ E \\ \end{array} $	 	$\underline{I}_{a} = 0$ $\underline{I}_{b} = 0$ $\underline{I}_{c} = 0$		$\underline{I}_1 = 0$ $\underline{I}_2 = 0$ $\underline{I}_0 = 0$	
$ \begin{array}{c} a & \underbrace{ & \vdots} & \underbrace{ & \end{array}{\end{array}} \end{array}{ & \underbrace{ & \underbrace{ & \end{array}{ & \end{array}{\end{array}}} \end{array}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\underline{U}_{a} = 0$	$\underline{I}_{b} = 0$ $\underline{I}_{c} = 0$	$\underline{U}_1 + \underline{U}_2 + \underline{U}_0 = 0$	$\underline{\underline{I}}_{2} = \underline{\underline{I}}_{1}$ $\underline{\underline{I}}_{0} = \underline{\underline{I}}_{2}$	
$a \xrightarrow{\bullet} \bullet \xrightarrow{\bullet} c$	$\underline{\underline{U}}_{b} = 0$ $\underline{\underline{U}}_{c} = 0$	$\underline{I_a} = 0$	$\underline{\underline{U}}_{2} = \underline{\underline{U}}_{1}$ $\underline{\underline{U}}_{0} = \underline{\underline{U}}_{2}$	$\underline{I}_1 + \underline{I}_2 + \underline{I}_0 = 0$	

3.5.3 Fault Conditions and Interconnections of Equivalent Circuits in Symmetrical Components

4 Equivalent Networks

internal R_{N} jX_{N} \underline{I}_{1} grid bus \underline{U}_{1N} \underline{Z}_{1N} \underline{U}_{1}			
$Z_{1N} = \frac{c U_{nN}}{\sqrt{3} I_k''} = \frac{c U_{nN}^2}{S_k''} = X_{1N} \sqrt{1 + \left(\frac{r_N}{x_N}\right)^2}$			
$r_{\rm N} / x_{\rm N} = \frac{R_{\rm N}}{X_{\rm N}}$			
$S_{\rm k}'' = \sqrt{3} U_{\rm nN} I_{\rm k}'' = \sqrt{3} U_{\rm nN} \frac{c U_{\rm nN}}{\sqrt{3} Z_{\rm 1N}} = \frac{c U_{\rm nN}^2}{Z_{\rm 1N}}$			
$\underbrace{\underline{Z}_{2N}}_{\mathbf{N}} \underbrace{\underline{I}_{2}}_{\mathbf{V}_{2}}$			
$3\underline{Z}_{ME}$			
grounded power systems, the following ap-			
For solidly grounded ($Z_{\rm ME} = 0$) power systems, the following applies: $Z_0 = Z_{\rm 0N} > Z_{\rm 1N}$			
Special case: stiff network			
→0			

5 Synchronous Machines

5.1 Equivalent Circuits for Steady-State Operating Conditions

Positive-sequence equivalent circuit				
	$\underline{U}_{1} = (R_{a} + jX_{1})\underline{I}_{1} + \underline{U}_{\Delta} + \underline{U}_{p}$			
General generator equation	$\underline{U}_{\Delta} = j(X_{d} - X_{1})\underline{I}_{1d} + j(X_{q} - X_{1})\underline{I}_{1q}$			
Positive-sequence equivalent circuit of salient-pole machines				
Salient-pole machine: $X_d \neq X_q$ Appropriate: $X_1 = X_q$	$\underline{U}_{\Delta} \underbrace{ \begin{array}{c} & & \\ & &$			
Positive-sequence impedance: $\underline{Z}_1 = \underline{Z}_{1G} = R_a + jX_1$	$ \begin{array}{c c} $			
Positive-sequence equivalent circuit of no machines)	onsalient-pole machines (or cylindrical-rotor			
Nonsalient-pole machine: $X_d = X_q$ Appropriate: $X_1 = X_d$	$\underline{U}_{p} \left(\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$			
Positive-sequence impedance: $\underline{Z}_1 = \underline{Z}_{1G} = R_a + jX_1$				
Synchronous generated voltage (nonlin- ear function of the excitation current, no-load characteristic) and field ratio	$U_{\rm p} = f(I_{\rm f}') \text{ and } \varepsilon = \frac{U_{\rm p}}{U_{\rm rG}/\sqrt{3}}$			
No-load excitation current $I'_{\rm f0}$	$U_{\rm p}(I_{\rm f0}') = U_{\rm rG}/\sqrt{3}$ and $\varepsilon = 1$			
Over- or underexcitation	$I'_{\rm f} > I'_{\rm f0}$ and $\varepsilon > 1$ resp. $I'_{\rm f} < I'_{\rm f0}$ and $\varepsilon < 1$			
Rotor displacement angle	$\delta_{\rm p} = \measuredangle \left(\underline{U}_{\rm p}, \underline{U}_{\rm 1}\right) = \varphi_{\rm Up} - \varphi_{\rm U1}$			
Reference impedance	$Z_{\rm B} = \frac{U_{\rm rG}}{\sqrt{3}I_{\rm rG}} = \frac{U_{\rm rG}^2}{S_{\rm rG}}$			
Armature resistance	$R_{\rm a} = r_{\rm a} Z_{\rm B}$			
Direct-axis synchronous reactance	$X_{\rm d} = x_{\rm d} Z_{\rm B}$			
Quadrature-axis synchronous reactance	$X_{q} = x_{q} Z_{B}$			

5.2 Equivalent Circuit for Transient Operating Conditions

The transient voltage \underline{U}'_1 (and the subtransient voltage \underline{U}''_1 in Section 5.3) are determined using the terminal voltage and current immediately before ($t = 0^-$) the fault

5.3 Equivalent Circuit for Subtransient Operating Conditions

5.4 Synchronous Grid Operation

⁴⁾ The internal grid voltage \underline{U}_N is a stiff voltage which describes the power exchange within the network and to which the resulting values of the rotor displacement angle and the field ratio are referenced. For $X_V = 0$, the equations for these variables result in the equations in Section 5.1.

⁵⁾ In order to avoid negative values for the active and reactive powers occurring during normal operating conditions of synchronous generators when using the PSC, the active and reactive powers consumed at the internal bus of the grid are considered.

5.4.1 Power to Load Angle Characteristics

5.4.2 Power Diagram

In practice, the operating ranges inductive and capacitive operation are also referred to as "overexcited operation" and "underexcited operation", although, depending on the current delivered to the grid, capacitive operation with $Q_{\rm N} < 0$ is also possible in over-excited operation of the synchronous machine with $I_{\rm f} > I_{\rm f0}$.

5.5 Principle of Angular Momentum and Equations of Motion

Synchronous speed	$n_0 = \frac{\Omega_0}{2\pi} = \frac{\omega_0}{2\pi p} = \frac{f}{p}$
Number of pole pairs	p
Mechanical and electrical angular velocity	$\Omega = 2\pi n$ and $\omega = \Omega p = 2\pi np$
Principle of angular momentum	$J\dot{\Omega} = M_{\rm T} - M_{\delta} - M_{\rm D}$
Moment of inertia	$J = J_{\text{rotor}} + J_{\text{turbine}(s)}$
Relation between power, torque and speed	$P = M \cdot \Omega = M \cdot 2\pi n^{\Delta \Omega \ll \Omega_0} \approx M \cdot \Omega_0$
Equation of motion (for $\Delta \omega \ll \omega_0$)	$\dot{\omega} = \ddot{\delta} = k_{\rm M} \left(P_{\rm T} - P_{\rm N} - P_{\rm D} \right)$ $= k_{\rm M} \left(P_{\rm T} - P_{\rm N} \right) - d_{\rm M} \Delta \omega$ and $\dot{\delta} = \Delta \omega = \omega - \omega_0 = \dot{\vartheta} - \omega_0$
Damping power	$P_{\rm D} = D \cdot \Delta \dot{\delta} = D \cdot \Delta \omega = D(\omega - \omega_0)$
Damping constant	D
Machine constants	$k_{\rm M} = \frac{\omega_0}{T_{\rm M}S_{\rm rG}}$ and $d_{\rm M} = D \cdot k_{\rm M}$
Electromechanical time constant	$T_{\rm M} = \frac{J \Omega_0^2}{S_{\rm rG}}$
Relation between angular coordinates	$\mathcal{G} = \omega_0 t + \delta + \alpha_0$
q-axis	$ \begin{array}{c} $

6 Induction Machines with Squirrel-Cage Rotor

6.1 Simplified Equivalent Circuits for Steady-State Operating Conditions

Splitting R'_L / s into slip-dependent and slip-independent parts results in the equivalent circuit on the right side. The stator resistance R_s is negligible for motors in the medium-and high-power range at nominal frequency.

Slip and synchronous rotational speed	$s = \frac{n_0 - n}{n_0}$ with $n_0 = \frac{f}{p} = \frac{\omega_0}{2 \pi p}$
Positive-sequence impedance: $\underline{Z}_1 = \underline{Z}_2$	$Z_{1\mathrm{M}} = R_{\mathrm{S}} + \frac{R_{\mathrm{L}}'}{s} + j(X_{\mathrm{\sigma}\mathrm{S}} + X_{\mathrm{\sigma}\mathrm{L}}') \approx \frac{R_{\mathrm{L}}'}{s} + jX_{\mathrm{k}}$
Rated apparent power	$S_{\rm rM} = \frac{P_{\rm rmech}}{\cos(\varphi_{\rm rM})\eta_{\rm rM}}$ (motor operation)
Short-circuit impedance with starting current I_{an} measured when starting with U_{rM} and $s = 1$	$Z_{1M} = \frac{1}{I_{an}/I_{rM}} \frac{U_{rM}^2}{S_{rM}} = \frac{1}{I_{an}/I_{rM}} Z_B$ $= \sqrt{(R_S + R'_L)^2 + X_k^2} \approx \sqrt{R'_L^2 + X_k^2}$
Losses at rated current and $s = 1$	$P_{\rm Vkr} = 3(R_{\rm S} + R_{\rm L}')I_{\rm rM}^2 \approx 3R_{\rm L}'I_{\rm rM}^2 = R_{\rm L}'\frac{S_{\rm rM}}{Z_{\rm B}}$
Negative-sequence equivalent circuit	(assumption $X_{\rm h} \rightarrow \infty$)
Negative-sequence impedance $\underline{Z}_2 = \underline{Z}_{2M} = \frac{R'_L}{2-s} + R_S + jX_k \text{ with}$ $s_2 = 2-s = \frac{-n_0 - n}{-n_0} = \frac{2n_0 - (n_0 - n)}{n_0}$	$R'_{L} \frac{1-s_{2}}{s_{2}}$ U_{2}

6.2 Simplified Equivalent Circuits for Transient Operating Conditions

The transient voltage $\underline{U}'_{\rm M}$ is determined using the values of the terminal voltage and current immediately before ($t = 0^-$) the fault (e.g. short-circuit).

6.3 Equation of Motion

Equation of motion (Angular momentum theorem)	$J_{\rm M}\dot{\Omega} = M_{\rm m} - M_{\rm w}$
Resistive torque	$M_{\rm w} = M_{\rm w0} + M_{\rm w1} \frac{\Omega}{\Omega_0} + M_{\rm w2} \frac{\Omega^2}{\Omega_0^2}$
Rotational speed and mechanical angular velocity (f_L = rotor frequency)	$n = \frac{f_0 - f_L}{p} = \frac{\Omega}{2\pi} = \frac{\Omega_0 (1 - s)}{2\pi} = \frac{\omega_0}{2\pi p} (1 - s)$
Torque (Kloss's equation)	$M = M_{\rm kipp} \frac{2s \ s_{\rm kipp}}{s^2 + s_{\rm kipp}^2}$
Breakdown torque and slip	$M_{\rm kipp} = 3 \frac{U_1^2}{2 \pi n_0} \frac{1}{2X_{\rm k}} \text{ and } s_{\rm kipp} = \frac{R_{\rm L}'}{X_{\rm k}}$

7 Transformers

7.1 Vector Group Symbols

Winding connection	Symbol	HV code letter	MV/LV code letter		
Wye connection	٦	Y	у		
Delta connection	Δ	D	d		
Zigzag connection	٦	Z	Z		
Grounding available		YN, ZN	yn, zn		
Autotransformer	Ya / Yauto				
Vector group symbols of two-winding transformers					
vector group = {HV letter} {LV letter} {vector group code number k }					
Vector group symbols of three-winding transformers					
vector group = {HV letter} {MV letter} {vector group code number k_{HV-MV}					
{LV letter} {vector group code number $k_{\text{HV-LV}}$ }					
The vector group code number k indicates the multiple of 30° by which the phasors of the phase voltages of the MV and LV winding lag behind those of the HV winding					

in symmetrical steady-state operation.

7.2 Conversions of Variables Between Transformer Voltage Levels

Transformation ratios (HV, MV and LV)				
Positive-sequence system	$\underline{\ddot{u}}_{1} = \ddot{u} e^{jk\frac{\pi}{6}} = \frac{U_{\text{rTHV}}}{U_{\text{rTLV}}} e^{jk\frac{\pi}{6}} = \frac{w_{\text{HV}}}{w_{\text{LV}}} \underline{m}_{\text{SG}}$			
Negative-sequence system	$\underline{\ddot{u}}_2 = \underline{\ddot{u}}_1^*$			
Zero-sequence system	$\underline{\ddot{u}}_0 = \ddot{u}_0 = \underline{\ddot{u}}_1 = \ddot{u}$			
Conversion of posseq. variables	LV to HV HV to LV			
Voltage	$\underline{U}_{1LV}' = \underline{\ddot{u}}_1 \underline{U}_{1LV}$	$\underline{U}_{1HV}' = \frac{1}{\underline{\ddot{u}}_1} \underline{U}_{1HV}$		
Current $\underline{I}'_{1LV} = \frac{1}{\underline{\ddot{u}}_1^*} \underline{I}_{1LV} \qquad \underline{I}'_{1HV} = \underline{\ddot{u}}_1^* \underline{I}_{1HV}$				
Impedance	$\underline{Z}_{1LV}' = \ddot{u}_1^2 \underline{Z}_{1LV}$	$\underline{Z}_{1HV}' = \frac{1}{\ddot{u}_1^2} \underline{Z}_{1HV}$		
Corresponding conversions of negative- and zero-sequence variables are carried out				

analogously using the respective transformation ratios.

7.3 Two-Winding Transformer

⁶⁾ Since the elements of the positive- and negative-sequence equivalent circuits are equal, no corresponding index was used. However, the different transformation ratios have to be considered (see Section 7.2).

⁷⁾ See Section 2.7.3.

7.4 Calculation of the Transformer Equivalent Circuit Elements

7.4.1 Calculation of the Series Impedance Using the Short-Circuit Test

The magnetizing impedance can be neglected while calculating the series impedance.

Reference impedance	$Z_{\rm B} = \frac{U_{\rm rT}^2}{S_{\rm rT}} \qquad U_{\rm rT} = U_{\rm rTHV} \text{ for the HV level} \\ U_{\rm rT} = U_{\rm rTLV} \text{ for the LV level}$	
Short-circuit impedance	$Z_{\rm T} = u_{\rm k} \cdot \frac{U_{\rm rT}^2}{S_{\rm rT}} = u_{\rm k} Z_{\rm B}$	
Resistance of the short-circuit im- pedance	$R_{\rm T} = r_{\rm T} Z_{\rm B} = r_{\rm T} \frac{U_{\rm rT}^2}{S_{\rm rT}} = \frac{P_{\rm Vkr}}{3I_{\rm rT}^2} = \frac{P_{\rm Vkr}}{S_{\rm rT}} Z_{\rm B} = u_{\rm R} Z_{\rm B}$	
Reactance of the short-circuit im- pedance	$X_{\rm T} = \sqrt{Z_{\rm T}^2 - R_{\rm T}^2} = \sqrt{u_{\rm k}^2 - u_{\rm R}^2} Z_{\rm B} = u_{\rm X} Z_{\rm B}$	

Generally, R_T and X_T are equally divided between the HV and LV winding impedances⁸⁾ of the positive-, negative- and zero-sequence equivalent circuits, see section 7.3.

7.4.2 Calculation of the Magnetizing Impedance by an Open-Circuit Test

ance.	
Open-circuit current	$I_{\ell} \approx \frac{U_{\rm rT}}{\sqrt{3} Z_{\rm h}} \longrightarrow i_{\ell} = \frac{1}{Z_{\rm h}} \frac{U_{\rm rT}^2}{S_{\rm rT}} = \frac{1}{Z_{\rm h}} Z_{\rm B}$
Magnetizing current	$I_{\rm m} \approx \frac{U_{\rm rT}}{\sqrt{3} X_{\rm h}} \longrightarrow i_{\rm m} = \frac{1}{X_{\rm h}} \frac{U_{\rm rT}^2}{S_{\rm rT}} = \frac{1}{X_{\rm h}} Z_{\rm B}$
Open-circuit impedance	$Z_{\rm h} = \frac{1}{i_{\ell}} \frac{U_{\rm rT}^2}{S_{\rm rT}} = \frac{1}{i_{\ell}} Z_{\rm B}$
Iron loss resistance	$R_{\rm Fe} = \frac{U_{\rm rT}^2}{P_{\rm V\ell r}} = \frac{1}{P_{\rm V\ell r} / S_{\rm rT}} Z_{\rm B}$
Magnetizing reactance	$X_{\rm h} = \frac{Z_{\rm h} R_{\rm Fe}}{\sqrt{R_{\rm Fe}^2 - Z_{\rm h}^2}} = \frac{1}{i_{\rm m}} \frac{U_{\rm rT}^2}{S_{\rm rT}} = \frac{1}{i_{\rm m}} Z_{\rm B}$
Zero-sequence magnetizing reactance	$X_{h0} = k_0 X_{h1}$ (k_0 dependent on core construction)
	· · · · · · · · · · · · · · ·

The series impedance can be neglected for the calculation of the magnetizing impedance.

The elements of the zero-sequence equivalent circuit can either be determined by an additional open-circuit test by feeding into a zero-sequence system or in a simplified manner by using a factor k_0 to estimate the elements.

⁸⁾ The impedance is specified as impedance per phase for the three-phase transformers. Exemplarily, the impedances of delta-connected windings are converted to an equivalent representation of wye-connected windings.

Code num- ber	Vector group	Phasor diagram HV LV		Circuit diagram HV LV
	Dd0	∪ ^V w	U w	olu 20 of olv 2v of olw 2w of
0	Yy0	U W	U W	01U 2U 0
	Dz0	$v \bigvee_{U} w$	v v w	
	Dy5	$_{\rm U} \overset{\rm V}{ imes}_{\rm W}$	w – v	
5	Yd5	U W	w C	
	Yz5	U W	w	
	Dd6	v √ww	W VU	
6	Үуб	UWW	WUV	
	Dz6	$v \sim w$	w V	
11	Dy11	v v w	v U W	
	Yd11	U W	v U W	
	Yz11	U W	V U W	

7.5 Typical Vector Groups (DIN VDE 0532)

Yy0Indicates preferred vector groups

7.6 Three-Winding Transformer

Positive- and negative-sequence equivalent circuits

Simplified equivalent circuit (without an ideal transformer, related to the HV level):

The calculation of the equivalent circuit parameters of a three-winding transformer is subject to the same calculation specifications as for the two-winding transformer. A minimum of three short-circuit tests is required to calculate the three series impedances. The magnetizing impedance ($X_{\rm h}$ and $R_{\rm Fe}$) is calculated according to Section 7.4.2 using the data of the open-circuit test.

Maximum power transport between windings	$S_{\rm rTHVMV} = \min(S_{\rm rTHV}, S_{\rm rTMV})$
	$S_{\rm rTHVLV} = \min(S_{\rm rTHV}, S_{\rm rTLV})$
	$S_{\rm rTMVLV} = \min\left(S_{\rm rTMV}, S_{\rm rTLV}\right)$
Short-circuit impedances related to the HV level	$Z_{\rm HVMV} = u_{\rm kHVMV} \frac{U_{\rm rTHV}^2}{S_{\rm rTHVMV}}$
	$Z_{\rm HVLV} = u_{\rm kHVLV} \frac{U_{\rm rTHV}^2}{S_{\rm rTHVLV}}$
	$Z'_{\rm MVLV} = u_{\rm kMVLV} \frac{U_{\rm rTHV}^2}{S_{\rm rTMVLV}}$
Winding impedances ⁹⁾	$\begin{bmatrix} \underline{Z}_{HV} \\ \underline{Z}'_{MV} \\ \underline{Z}'_{LV} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \underline{Z}_{HVMV} \\ \underline{Z}_{HVLV} \\ \underline{Z}'_{MVLV} \end{bmatrix}$

⁹⁾ The values of the winding impedances can partly become negative. This is due to the structure of the equivalent circuit used.

8 Transmission Lines

The equations for the line constants and the positive-, negative- and zero-sequence equivalent circuits are identical with regard to the structure. By means of the respective primary line parameters per unit length for the positive-, negative- and zero-sequence system, the line constants are calculated and the elements of the equivalent circuits are parameterized.

8.1 Surge Impedance and Propagation Constant

Transmission lines (affected by losses)		
Characteristic impedance (surge impedance)	$\underline{Z}_{w} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} = \frac{1}{\underline{Y}_{w}}$	
Propagation constant with attenuation con- stant α and phase(change) constant β	$\underline{\gamma} = \sqrt{(R' + j\omega L')(G' + j\omega C')} = \alpha + j\beta$	
R', L', G' and C' are the primary line parameters per unit length in $\Omega/\text{km}, \text{H}/\text{km}, \text{S}/\text{km}$ and F/km		
Low-loss transmission lines ($R' \ll \omega L'$ and $G' \ll \omega C'$)		
Characteristic impedance ¹⁰⁾ and character- istic admittance	$\underline{Z}_{w} = \frac{1}{\underline{Y}_{w}} \approx \sqrt{\frac{L'}{C'}} \left(1 - j\frac{1}{2}\frac{R'}{\omega L'}\right) \approx \sqrt{\frac{L'}{C'}}$	
Propagation constant with attenuation con- stant α and phase(change) constant β	$\underline{\gamma} = \frac{1}{2} \left(\frac{R'}{L'} + \frac{G'}{C'} \right) \sqrt{L'C'} + j\omega\sqrt{L'C'}$	

8.2 Solution of the Line Equations in the Frequency Domain

Voltage and current at the location *x* along the line (node A: x = 0, node B: x = l) depending on the terminal values at node A:

$$\begin{bmatrix} \underline{U}(x) \\ \underline{I}(x) \end{bmatrix} = \begin{bmatrix} \cosh(\underline{\gamma} x) & -\underline{Z}_{w} \sinh(\underline{\gamma} x) \\ \underline{Y}_{w} \sinh(\underline{\gamma} x) & -\cosh(\underline{\gamma} x) \end{bmatrix} \begin{bmatrix} \underline{U}_{A} \\ \underline{I}_{A} \end{bmatrix}$$

depending on the terminal values at node B:

$$\begin{bmatrix} \underline{U}(x) \\ \underline{I}(x) \end{bmatrix} = \begin{bmatrix} \cosh(\underline{\gamma}(l-x)) & -\underline{Z}_{w} \sinh(\underline{\gamma}(l-x)) \\ \underline{Y}_{w} \sinh(\underline{\gamma}(l-x)) & -\cosh(\underline{\gamma}(l-x)) \end{bmatrix} \begin{bmatrix} \underline{U}_{B} \\ \underline{I}_{B} \end{bmatrix}$$

¹⁰⁾ The capacitive component of the characteristic impedance (imaginary part) can usually be neglected for low-loss lines due to its small size.

8.3 Distributed Line Model and Two-Port Equations

Equivalent circuit with distributed parameters	
$ \underbrace{\underline{Z}_{w}}_{A} \underbrace{\frac{\cosh(\underline{\gamma} l) - 1}{\sinh(\underline{\gamma} l)}}_{A} \underbrace{\underline{Z}_{w}}_{A} \underbrace{\frac{\cosh(\underline{\gamma} l) - 1}{\sinh(\underline{\gamma} l)}}_{A} \underbrace{\underline{Z}_{w}}_{A} \underbrace{\underline{Z}_{w}}_{\sinh(\underline{\gamma} l)} \underbrace{\underline{Z}_{w}}_{F-equivalent circuit}} $	$\underline{\underline{U}}_{B} \qquad \underline{\underline{U}}_{A} \qquad \underbrace{\underline{U}}_{A} \qquad \underbrace{\underline{\underline{V}}_{w}}_{A} \qquad \underbrace{\frac{\underline{\underline{V}}_{w}}{\operatorname{sinh}(\underline{\gamma}l)}}_{\Pi - \text{equivalent circuit}} \underbrace{\underline{\underline{V}}_{B}}_{\Pi - \text{equivalent circuit}}$
Two-port equations	•
Impedance representation	$\begin{bmatrix} \underline{U}_{A} \\ \underline{U}_{B} \end{bmatrix} = \begin{bmatrix} \underline{Z}_{w} \frac{\cosh(\underline{\gamma}l)}{\sinh(\underline{\gamma}l)} & \underline{Z}_{w} \frac{1}{\sinh(\underline{\gamma}l)} \\ \underline{Z}_{w} \frac{1}{\sinh(\underline{\gamma}l)} & \underline{Z}_{w} \frac{\cosh(\underline{\gamma}l)}{\sinh(\underline{\gamma}l)} \end{bmatrix} \begin{bmatrix} \underline{I}_{A} \\ \underline{I}_{B} \end{bmatrix}$
Admittance representation	$\begin{bmatrix} \underline{I}_{A} \\ \underline{I}_{B} \end{bmatrix} = \begin{bmatrix} \underline{Y}_{w} \frac{\cosh(\underline{\gamma}l)}{\sinh(\underline{\gamma}l)} & -\underline{Y}_{w} \frac{1}{\sinh(\underline{\gamma}l)} \\ -\underline{Y}_{w} \frac{1}{\sinh(\underline{\gamma}l)} & \underline{Y}_{w} \frac{\cosh(\underline{\gamma}l)}{\sinh(\underline{\gamma}l)} \end{bmatrix} \begin{bmatrix} \underline{U}_{A} \\ \underline{U}_{B} \end{bmatrix}$
Iterative representation (cascade or transmission representation)	$\begin{bmatrix} \underline{U}_{A} \\ \underline{I}_{A} \end{bmatrix} = \begin{bmatrix} \cosh(\underline{\gamma}l) & -\underline{Z}_{w} \sinh(\underline{\gamma}l) \\ \underline{Y}_{w} \sinh(\underline{\gamma}l) & -\cosh(\underline{\gamma}l) \end{bmatrix} \begin{bmatrix} \underline{U}_{B} \\ \underline{I}_{B} \end{bmatrix}$

8.4 Approximations for Electrically Short Transmission Lines $(|\gamma l| \ll 1)$

8.5 **Operational Performance**

Voltage drop	$\left \Delta \underline{U}_{Z}\right = \left \underline{U}_{A} - \underline{U}_{B}\right $
Voltage difference	$\Delta U = \left \underline{U}_{\mathrm{A}} \right - \left \underline{U}_{\mathrm{B}} \right $
Transmission angle	$\delta_{\rm AB} = \delta_{\rm A} - \delta_{\rm B}$
Capacitive charging current ¹¹⁾	$\underline{I}_{\rm C} = \underline{I}_{\rm A} \Big _{\underline{I}_{\rm B}=0} \approx \underline{I}_{\rm CA} + \underline{I}_{\rm CB} = j\omega \frac{C_{\rm L}}{2} (\underline{U}_{\rm A} + \underline{U}_{\rm B})$
Capacitive charging power ¹²⁾	$Q_{\rm C} = {\rm Im} \left\{ 3 \underline{U}_{\rm A} \underline{I}_{\rm C}^* \right\} \approx \omega C_{\rm L} U_{\rm nN}^2$

8.6 Terminal Power, Losses and Reactive Power Demand

Power at the line terminals (see two- port network in 2.7.2)	$\begin{bmatrix} \underline{S}_{A} \\ \underline{S}_{B} \end{bmatrix} = \begin{bmatrix} P_{A} + jQ_{A} \\ P_{B} + jQ_{B} \end{bmatrix} = 3 \begin{bmatrix} \underline{Y}_{AA}^{*}U_{A}^{2} + \underline{Y}_{AB}^{*}U_{A}U_{B}^{*} \\ \underline{Y}_{BB}^{*}U_{B}^{2} + \underline{Y}_{BA}^{*}U_{B}U_{A}^{*} \end{bmatrix}$
Transmissible active power (for electrically short lines with neglect of R', G' and C')	$P_{\rm A} = -P_{\rm B} = P_{\rm AB} \approx 3 \frac{U_{\rm A} U_{\rm B}}{X_{\rm L}} \sin \delta_{\rm AB}$
Line losses $P_{\rm v}$ and reactive power demand $Q_{\rm v}$	$\underline{S}_{\rm V} = P_{\rm V} + jQ_{\rm V} = \underline{S}_{\rm A} + \underline{S}_{\rm B}$
Line losses (example of П-equivalent circuit with lumped parameters)	$P_{\rm V} = 3R_{\rm L}I_{\lambda}^2 + 3\frac{1}{2}G_{\rm L}(U_{\rm A}^2 + U_{\rm B}^2) = P_{\rm A} + P_{\rm B}$
Reactive power demand (example of Π-equivalent circuit with lumped parameters)	$Q_{\rm V} = 3\omega L_{\rm L} I_{\lambda}^2 - 3\frac{1}{2}\omega C_{\rm L} \left(U_{\rm A}^2 + U_{\rm B}^2\right) = Q_{\rm A} + Q_{\rm B}$

8.7 Surge Impedance Loading (Natural Load)

Surge impedance loading (SIL)	
Condition for surge impedance loading	$\underline{Z}_{\rm B} = \underline{Z}_{\rm w} \longrightarrow \underline{U}_{\rm B} = -\underline{Z}_{\rm w} \cdot \underline{I}_{\rm B}$ (Termination at node B with characteristic impedance)
Natural load ¹²⁾	$\underline{S}_{\text{Nat}} = 3 \frac{U_{\text{B}}^2}{\underline{Z}_{\text{w}}^*} \approx P_{\text{Nat}} = 3 \frac{U_{\text{B}}^2}{Z_{\text{w}}}$ (apparent power output at terminal B)
Above natural load ¹¹⁾	$Q_{\rm V} > 0$ for $P_{\rm B} > P_{\rm Nat}$ resp. $Z_{\rm B} < Z_{\rm w}$
Below natural load ¹¹⁾	$Q_{\rm V} < 0$ for $P_{\rm B} < P_{\rm Nat}$ resp. $Z_{\rm B} > Z_{\rm w}$

¹¹⁾ Approximation applies to Π -equivalent circuit with lumped parameters.

¹²⁾ Approximation applies to low-loss lines (see Section 8.1)

9 Medium- and Low-Voltage Grids

9.1 Current Distribution

General equivalent circuit: Applies only to voltage-independent load currents		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	case a) additionally for case b)	
Case a) Single-fed line:	\underline{U}_{A} given, without \underline{Z}_{m+1}	
Kirchhoff's voltage law provides <i>m</i> independent equations	$ \underbrace{\underline{U}}_{1} = \underline{U}_{A} - \underline{Z}_{1} \underbrace{\left(\underline{I}_{1} + \underline{I}_{2} + \dots + \underline{I}_{m}\right)}_{\underline{I}_{A}} (1) $ $ \underbrace{\underline{U}}_{2} = \underline{U}_{1} - \underline{Z}_{2} \begin{pmatrix} \underline{I}_{2} + \dots + \underline{I}_{m} \end{pmatrix} (2) $ $ \vdots $ $ \underbrace{\underline{U}}_{B} = \underline{U}_{i} - \underline{Z}_{m} \underline{I}_{m} \qquad (m) $	
Case b1) Double-fed lin	e: $U_{\rm A} = U_{\rm B}$	
General mesh A – B	$\underline{U}_{A} - \underline{U}_{B} = \sum_{i=1}^{m+1} \Delta \underline{U}_{\underline{Z}_{i}} = \underline{Z}_{1} \left(\underline{I}_{1} + \underline{I}_{2} + \dots - \underline{I}_{B} \right) + \underline{Z}_{2} \left(\underline{I}_{2} + \dots - \underline{I}_{B} \right) + \dots + \underline{Z}_{m+1} \left(-\underline{I}_{B} \right)$	
Calculation of one ter- minal current using "torque approach" (for node B or A)	$\underline{I}_{B} = \frac{\underline{Z}_{1}\underline{I}_{1} + (\underline{Z}_{1} + \underline{Z}_{2})\underline{I}_{2} + \dots + (\underline{Z}_{1} + \underline{Z}_{2} + \dots + \underline{Z}_{m})\underline{I}_{m}}{\underline{Z}_{1} + \underline{Z}_{2} + \dots + \underline{Z}_{m+1}}$ Stepwise determination of the current distribution	
Case b2) Double-fed line: $\underline{U}_{A} \neq \underline{U}_{B}$		
General approach	 Calculation of a preliminary current distribution with <u>U</u>_A = <u>U</u>_B corresponding to case b1 Superposition with an offset current Δ<u>I</u>_{AB} = <u>U</u>_A - <u>U</u>_B <u>Σ</u>_{i=1}^{m+1}<u>Z</u>_i 	
The current distribution can be used to determine the voltage drops $\Delta \underline{U}_{Z_i}$.		

9.2 Load Application Factor ε

10 Rotor Angle Stability of the Single-Machine Problem

10.1 Small-Signal Stability

Equation of motion (see 5.5)	$\dot{\omega} = k_{\rm M} \left(P_{\rm T} - P_{\rm N} \right)$ and $\dot{\delta} = \omega - \omega_0 = \dot{\vartheta} - \omega_0$
Operating point with turbine power $P_{\rm T}$ (losses are neglected)	P Stability reserve $P_{\rm T}$ $P_{\rm T}$ $P_{\rm T}$ $\pi/2$ $\pi \delta_{\rm pN}$
Requirement for small-signal sta- bility	$\frac{\mathrm{d}P_{\mathrm{N}}}{\mathrm{d}\delta_{\mathrm{pN}}} > 0 \text{ resp. } -\frac{\pi}{2} < \delta_{\mathrm{pN}} < \frac{\pi}{2}$
Synchronizing power	$P_{\rm s} = \frac{\mathrm{d}P_{\rm N}}{\mathrm{d}\delta_{\rm pN}} = P_{\rm kipp} \cos \delta_{\rm pN}$

10.2 Transient Stability

Operating points with turbine power $P_{\rm T}$ (losses are neglected) Applies to transient quantities: $\delta' = \varphi_{\rm U'} - \varphi_{\rm UN}$ and (transient voltage \underline{U}' see 5.2) $P_{\rm N}^{\rm a} = 3 \frac{U'U_{\rm N}}{X'_{\rm d} + X_{\rm V}} \sin \delta'$	$P_{T} \xrightarrow{P_{N}^{0}} F_{V}$ $P_{T} \xrightarrow{F_{B}} \delta_{0}' \delta_{a}' = \delta'(t_{a}) \delta_{max}' \delta_{grenz}'$ (index 0: before fault, index a: after fault clearance)
Requirement for transient stability	$F_{\rm V} = F_{\rm B}$ (Law of equal areas)
Law of equal areas maximum fault clearance time	$F_{\rm v_{max}} = F_{\rm B} = -\int_{\delta'_{\rm amax}}^{\delta'_{\rm max}} (P_{\rm T} - P_{\rm kipp}^{\rm a} \sin \delta') \mathrm{d}\delta'$
Maximum fault clearance time	$t_{\rm a max} = \sqrt{\frac{2}{k_{\rm M} P_{\rm T}} \left(\delta_{\rm a max}' - \delta_0'\right)}$

11 Line Frequency Control

11.1 Balance Model of the Power System

Differential equation for the calcu- lation of the line frequency at $P_{\text{T0}} = P_{\text{L0}}$	$M_{\rm N} \frac{\Delta \dot{f}}{f_0} = \Delta P_{\rm T} - \Delta P_{\rm Lx} = P_{\rm TP} + P_{\rm TS} - \Delta P_{\rm Lstat} - P_{\rm x}$
Turbine and load power at the operating point	$P_{\rm T0}$ and $P_{\rm L0}$
Inertia constant of the power system	$M_{\rm N} = P_{\rm G} T_{\rm G} + P_{\rm M} T_{\rm M}$
Total rated active power of syn- chronous generators in operation	$P_{\rm G} = \sum_{i=1}^{m_{\rm G}} P_{\rm rGi}$
Total rated active power of induc- tion motors in operation	$P_{\mathrm{M}} = \sum_{i=1}^{m_{\mathrm{M}}} P_{\mathrm{rM}i}$
Equivalent generator time constant	$T_{\rm G} = \frac{1}{P_{\rm G}} \sum_{i=1}^{m_{\rm G}} J_{{\rm G}i} \Omega_0^2$
Equivalent motor time constant	$T_{\rm M} = \frac{1}{P_{\rm M}} \sum_{i=1}^{m_{\rm M}} J_{\rm Mi} \Omega_0^2$

11.2 Proportional Gains and Droops

Frequency bias of primary control (absolute and per unit value) and control droop of the generator <i>i</i>	$k_{\mathrm{P}i} = -\frac{\Delta P_{\mathrm{T}i}}{\Delta f}, \ k_{\mathrm{P}i}' = k_{\mathrm{P}i} \frac{f_0}{P_{\mathrm{rG}i}} \text{ and}$ $s_{\mathrm{P}i} = \frac{1}{k_{\mathrm{P}i}'} = \frac{1}{k_{\mathrm{P}i}} \frac{P_{\mathrm{rG}i}}{f_0}$
Total frequency bias of primary control and total control droop of generators	$k_{\rm P} = \sum_{i=1}^{m_{\rm G}} k_{\rm Pi} = \frac{1}{f_0} \sum_{i=1}^{m_{\rm G}} \frac{P_{\rm rGi}}{s_{\rm Pi}} \text{ and}$ $s_{\rm P} = P_{\rm G} \left(\sum_{i=1}^{m_{\rm G}} \frac{P_{\rm rGi}}{s_{\rm Pi}} \right)^{-1} = \frac{1}{k_{\rm P}} \frac{P_{\rm G}}{f_0}$
Frequency bias (absolute and per unit value) and droop of the load <i>i</i>	$k_{\text{L}i}, \ k'_{\text{L}i} = k_{\text{L}i} \frac{f_0}{P_{\text{L}0i}} \text{ and } s_{\text{L}i} = \frac{1}{k'_{\text{L}i}} = \frac{1}{k_{\text{L}i}} \frac{P_{\text{L}0i}}{f_0}$
Total load frequency bias and total load droop	$k_{\rm L} = \frac{\mathrm{d}P_{\rm Lstat}}{\mathrm{d}f} \bigg _{\rm AP} = \sum_{i=1}^{m_{\rm L}} k_{\rm Li} \text{ and}$ $s_{\rm L} = P_{\rm L0} \cdot \left(\sum_{i=1}^{m_{\rm L}} \frac{P_{\rm L0i}}{s_{\rm Li}}\right)^{-1} = \frac{1}{k_{\rm L}} \frac{P_{\rm L0}}{f_0}$
Frequency bias of the power system	$k_{\rm N} = k_{\rm P} + k_{\rm L}$

11.3 Power System Operating Point after Completion of Primary Control (without Secondary Control)

f f_0 f_p f_p Δf $P_{\rm TP}$ $P_{\rm L0}$	$\frac{1}{k_{\rm L}}$ $LCC \Delta f = \frac{\Delta P_{\rm Lstat}}{k_{\rm L}}$ $GCC \Delta f = -\frac{P_{\rm x}}{k_{\rm N}}$ $P_{\rm Lstat}$ $PPCC \Delta f = -\frac{P_{\rm TP}}{k_{\rm P}}$ $P_{\rm L0} + P_{\rm x}$
Unplanned change of load	P _x
Steady-state operation (after completion of primary control)	$\Delta \dot{f} = 0$
Primary control power (Power Plant Characteristic Curve (PPCC))	$\Delta P_{\rm T} = P_{\rm TP} = -k_{\rm P} \Delta f$
Frequency-dependent change of load (Load Characteristic Curve (LCC))	$\Delta P_{\rm Lstat} = k_{\rm L} \Delta f$
Load change in the perturbed power system	$\Delta P_{\rm Lx} = \Delta P_{\rm Lstat} + P_{\rm x}$
Frequency change in power system (Grid Characteristic Curve (GCC))	$\Delta f = -\frac{P_{\rm x}}{k_{\rm N}}$

11.4 Power System Operating Point after Completion of Secondary Control

12 Short-Circuit Current Calculation

12.1 Short-Circuit Current Over Time

12.2 Characteristic Short-Circuit Current Parameters

Initial symmetrical short-circuit current (rms value of the AC symmetrical component applicable at instant of short-circuit)	<i>I</i> _k "
Transient short-circuit current (rms value of the AC symmetrical component in transient time domain)	I' _k
Steady-state short-circuit current (rms value of the short-circuit current after the decay of the transient phenomena)	I _k
Peak short-circuit current (maximal possible instantaneous value of the prospective short-circuit current)	$i_{ m p}$
Symmetrical short-circuit breaking current (rms value of the AC symmetrical component at the instant of contact separation)	I _b
Thermal equivalent short-circuit current (rms value of short-circuit current having the same thermal effect and the same dura- tion T_k as the decaying short-circuit current)	I _{th}
Time constants (sub-transient, transient, direct-current)	$T_{\rm d}'', T_{\rm d}', T_{\rm g}$
Angle of short-circuit impedance \underline{Z}_k at short-circuit location	$arphi_{ m Zk}$
Initial phase angle of the voltage at short-circuit location	$arphi_{\mathrm{u}}$
Initial phase angle of the short-circuit current $i_k(t)$	$\alpha = \varphi_{\rm u} - \varphi_{\rm Zk}$

12.3 Method of the Equivalent Voltage Source at the Short-Circuit Location (According to IEC 60909 and VDE 0102)

Calculation independent of operating point, estimation of the minimal and maximal absolute value of the initial symmetrical short-circuit current $I_k^{"13}$

absolute value of the initial symmetrical short-circuit current T _k		
$\underbrace{\underline{I}_{k}^{\prime\prime}}_{U_{ers}}$	 Reverse inject into the passive network at the short-circuit location Equivalent voltage source U_{ers} at the short-circuit location Neglect of shunt admittances and non-rotating loads¹⁴) 	
Initial symmetrical short-circuit current	$I_{\rm k}'' = \frac{U_{\rm ers}}{Z_{\rm k}} = c \frac{U_{\rm n}}{\sqrt{3}Z_{\rm k}}$	
Equivalent voltage source at the short-circuit location	$U_{\rm ers} = c \frac{U_{\rm n}}{\sqrt{3}}$	
Voltage factor c for the calculation of the maximum short-circuit currents ¹⁵⁾	<i>c</i> _{max} = 1,1	
Voltage factor c for the calculation of the minimum short-circuit currents ¹⁵⁾	$c_{\min} = 1, 0$	
Short-circuit impedance at the short-circuit location ¹⁶⁾ (effective impedance at the instant of the short-circuit)	$\underline{Z}_{k} = R_{k} + jX_{k}$	
Peak short-circuit current (κ: see factor in Section 12.5.1)	$i_{\rm p} = \kappa \sqrt{2} I_{\rm k}''$	
Symmetrical short-circuit breaking current ¹⁷⁾ (μ : see factor in Section 12.5.2)	$I_{\rm b} = \mu I_{\rm k}''$	
Thermal equivalent short-circuit current (<i>m</i> and <i>n</i> : see factors in Section 12.5.3)	$I_{\rm th} = \sqrt{m+n} \ I_{\rm k}''$	
Steady state short-circuit current	I _k	

¹³⁾ For the consideration of the short-circuit current contributions of doubly-fed induction generator-based wind turbines and power station units with full-size converter see IEC 60909 and section 12.4.

¹⁴⁾ Deviations are possible for the zero-sequence system (see IEC 60909).

¹⁵⁾ Valid for nominal system voltages > 1 kV

¹⁶⁾ For the calculation of the maximum initial symmetrical short-circuit current according to IEC 60909, impedance correction factors shall be applied acc. section 12.6.

¹⁷⁾ Only valid for near-to-generator single-fed three-phase short-circuits.

12.4 Extending the Method of the Equivalent Voltage Source at the Short-Circuit Location from Section 12.3 by the Short-Circuit Current Contributions of Full-Sized Converters (acc. IEC 60909 resp. VDE 0102)

Full-size converter (FSC) systems are generation units connected to the grid via full-size converters. They are represented by ideal current sources $(Z_i \rightarrow \infty)$. Their contributions to the short-circuit current are calculated with the current divider rule and taken into account in approximation by adding their absolute values to the initial symmetrical short-circuit current according to section 12.3.

For the calculation of I_b and I_k , reference is made to the details and requirements specified in IEC 60909. For the calculation of I_{th} refer to section 12.3.

12.5 Factors for the Calculation of Short-Circuit Currents

12.5.1 Factor κ for the Calculation of the Peak Short-Circuit Current i_p

a) Uniform ratio R/X: At all short-circuit locations, the smallest ratio R/X of the network branches, that carry partial short-circuit currents at the nominal voltage corresponding to the short-circuit location, is applied.

¹⁸⁾ I''_{koFSC} is the maximum initial symmetrical short-circuit current without full-size converters (index oFSC) according to section 12.3.

¹⁹⁾ For the calculation of the minimum initial symmetrical short-circuit current, the shares of the full-size converters are neglected.

 $^{^{20)}}$ *i* identifies the node of the short circuit and *j* the nodes, where full-sized converters are connected to.

²¹⁾ The determination results e.g. by calculating the voltage at node *i* in case of an exclusive feed-in of a node current \underline{I}_i at node *j* of the short-circuit and source free network.

²²⁾ For further details and requirements please refer to IEC 60909.

- b) Ratio R/X at the short-circuit location: For the ratio R/X, the ratio R_k/X_k of the short-circuit impedance \underline{Z}_k at the short-circuit location is used: $R/X = R_k/X_k$. To cover inaccuracies within the network reduction to a single short-circuit impedance, the factor $\kappa_{(b)} = 1,15 \cdot \kappa$ is applied, if $R_k/X_k \ge 0,3$, else $\kappa_{(b)} = \kappa$.
- c) Equivalent frequency f_c : Determination of the short-circuit impedance at the short-circuit location $\underline{Z}_c = R_c + jX_c$ for the equivalent frequency $f_c = 20$ Hz (at nominal line frequency f = 50 Hz). It applies: $R/X = (R_c/X_c) \cdot (f_c/f)$.

12.5.2 Factor μ for the Calculation of the Sym. Breaking Current I_b

12.5.3 Factors *m* and *n* for the Calculation of the Thermal Equivalent Short-Circuit Current *I*_{th}

12.6 Consideration of Impedance Correction Factors (according to IEC 60909 and VDE 0102)

Impedance correction factors for calculating the maximum short-circuit currents²³⁾

The short-circuit impedance \underline{Z}_k at the short-circuit location should be calculated with corrected impedances. The defined value of the equivalent voltage source at the short-circuit location is in many cases not sufficient to calculate the initial symmetrical short-circuit currents and the partial initial short-circuit currents within a fault limit of -5 %. Therefore, the implementation of impedance correction factors is necessary.

Two-winding transformers ²⁴⁾	$\underline{Z}_{\mathrm{TK}} = K_{\mathrm{T}} \underline{Z}_{\mathrm{T}}$
	$K_{\rm T} = 0.95 \frac{c_{\rm max}}{1+0.6 x_{\rm T}}$
	$\underline{Z}_{\rm HVMVK} = K_{\rm THVMV} \underline{Z}_{\rm THVMV}$
	$\underline{Z}_{\rm HVLVK} = K_{\rm THVLV} \underline{Z}_{\rm THVLV}$
	$\underline{Z}'_{\rm MVLVK} = K_{\rm TMVLV} \underline{Z}'_{\rm TMVLV}$
Three-winding transformers	$K_{\rm THVMV} = 0.95 \frac{c_{\rm max}}{1+0.6 x_{\rm THVMV}}$
	$K_{\rm THVLV} = 0.95 \frac{c_{\rm max}}{1+0.6 x_{\rm THVLV}}$
	$K_{\rm TMVLV} = 0.95 \frac{c_{\rm max}}{1+0.6 x_{\rm TMVLV}}$
Synchronous machines ²⁵⁾	$\underline{Z}_{\rm GK} = K_{\rm G} \underline{Z}_{\rm G}$
	$K_{\rm G} = \frac{U_{\rm nN}}{U_{\rm rG}} \frac{c_{\rm max}}{1 + x_{\rm d}'' \sqrt{1 - \cos^2 \varphi_{\rm rG}}}$
Power station units with on-load tap changer ²⁶⁾	$\underline{Z}_{\rm SK} = K_{\rm S} \left(\ddot{u}^2 \underline{Z}_{\rm G} + \underline{Z}_{\rm THV} \right)$
	$K_{\rm S} = \frac{U_{\rm nN}^2}{U_{\rm rG}^2} \frac{U_{\rm rTLV}^2}{U_{\rm rTHV}^2} \frac{c_{\rm max}}{1 + x_{\rm d}'' - x_{\rm T} \sqrt{1 - \cos^2 \varphi_{\rm rG}}}$
Power station units without on- load tap changer ²⁶⁾	$\underline{Z}_{\rm SOK} = \overline{K_{\rm SO}\left(\ddot{u}^2 \underline{Z}_{\rm G} + \underline{Z}_{\rm THV}\right)}$
	$K_{\rm SO} = \frac{U_{\rm nN}}{U_{\rm rG} \left(1 + p_{\rm G}\right)} \frac{U_{\rm rTLV}}{U_{\rm rTHV}} \frac{\left(1 \pm p_{\rm T}\right) c_{\rm max}}{1 + x_{\rm d}'' \sqrt{1 - \cos^2 \varphi_{\rm rG}}}$

²³⁾ In case of unbalanced short-circuits, the impedance correction factors shall be applied to the negativeand the zero-sequence system. Impedances between a neutral point and ground shall be introduced without correction factor.

 $^{^{24)}}$ c_{max} is related to the nominal voltage of the network connected to the low-voltage side of the network transformer. The impedance correction is not valid for unit transformers and wind power station units.

²⁵⁾ Not to be used, if connected via a unit transformer.

²⁶⁾ To be used in case of short-circuits on the high-voltage side of the unit transformer.

12.7 Calculation with Kirchhoff's Laws

Calculation depends on operating point, exact calculation of the initial symmetrical short-circuit current $\underline{I}_{k}^{"}$ by magnitude and phase angle using the superposition method

Calculation of partial short-circuit currents	$\underline{I}_{kG}'' = \frac{\underline{U}''}{\underline{Z}_{ersG}}, \ \underline{I}_{kN}'' = \frac{\underline{U}_{N}}{\underline{Z}_{ersN}}, \ \dots$
Calculation of the exact initial symmetrical short-circuit current	$\underline{I}_{k}'' = \underline{I}_{kG}'' + \underline{I}_{kN}'' + \dots$

12.8 Thermal Short-Circuit Strength

	· · · · · · · · · · · · · · · · · · ·	
DC resistance at \mathcal{G}_{20}		
κ_{20} :Specific conductivity at 20 C	$R_0 = \frac{l}{l}$	
<i>l</i> : Conductor length	$\kappa_{20} A$	
A: Conductor cross-section		
DC resistance at ϑ_x		
α_{20} : Temperature coefficient of resistance at 20 C	$R = R_0 \left(1 + \alpha_{20} \left(\mathcal{P}_{x} - \mathcal{P}_{20} \right) \right)$	
Thermal equivalent short-circuit current	$I_{\rm th} = I_{\rm k}'' \sqrt{m+n} = \sqrt{\frac{1}{T_{\rm k}} \int_{0}^{T_{\rm k}} i_{\rm k}^{2}(t) \mathrm{d}t}$	
Duration of the short-circuit current (=sum of short-circuit durations in case of suc- cessive short circuits with short pauses)	$T_{\rm k} = \sum_{i=1}^{N_{\rm k}} T_{\rm ki}$	
Determination of thermal short-time	$I_{\rm th} \leq I_{\rm thr}$ for $T_{\rm k} \leq T_{\rm kr}$	
strength of electrical machines, trans- formers, transducers, reactors and	$L \leq L$ $T_{\rm kr}$ for $T > T$	
switching devices	$I_{\rm th} \leq I_{\rm thr} \sqrt{T_k}$ for $I_k > I_{\rm kr}$	
Thermal equivalent short-circuit current density	$S_{\rm th} = \frac{I_{\rm th}}{A} = \frac{I_{\rm k}'' \sqrt{m+n}}{A}$	
\mathcal{G}_{b} : Conductor temperature at the	$- \left[\kappa_{20} c_{\rm p} \rho_{\rm ln} \left(1 + \alpha_{20} \left(\mathcal{G}_{\rm e} - 20^{\circ} \rm C \right) \right) \right]$	
beginning of a short-circuit	$= \sqrt{-\alpha_{20}T_{\rm k}} \ln\left(\frac{1+\alpha_{20}(\theta_{\rm b}-20^{\circ}{\rm C})}{1+\alpha_{20}(\theta_{\rm b}-20^{\circ}{\rm C})}\right)$	
\mathcal{P}_{e} : Conductor temperature at the end	c_{p} : Specific thermal capacity	
of a short-circuit	ρ : Density of conductor	
Rated short-time withstand current density $S_{thr} = S_{th}$ calculated with:		

 $\mathcal{G}_{b} = \mathcal{G}_{b,max}$: Maximum permissible operating temperature (unless otherwise known)

- $\theta_{e} = \theta_{e,max}$: Maximum permissible temperature in the event of a short-circuit
- $T_{\rm k} = T_{\rm kr}$: Rated duration of the short-circuit current (e.g. 1 s)

Determination of thermal short-time
strength of overhead line conductors,
cables and busbars $S_{th} \leq S_{thr} \sqrt{\frac{T_{kr}}{T_k}}$

Rated short-time withstand current density depending on the conductor temperature at the beginning of the short-circuit \mathcal{P}_{b} and the conductor temperature at the end of the short-circuit \mathcal{P}_{e} for a rated duration of the short-circuit current $T_{kr} = 1$ s for aluminum, as wells copper and steel

12.9 Mechanical Short-Circuit Strength

12.9.1 Determination of Magnetic Fields and Forces

12.9.2 Maximum Forces Between Main Conductors and Sub-Conductors

Maximum main conductors forme and IEC 60865.1 du	ning o 2 phage short sinewit
maximum main conductors force acc. IEC 60865-1 du	ring a 5-phase snort-circuit
$i_{\rm p}$: Peak short-circuit current	_
<i>l</i> : Center-line distance between supports	$F_{\rm m} = \frac{\mu_0}{2} \frac{\sqrt{3}}{2} i_{\rm p}^2 \frac{l}{l}$
$a_{\rm m}$: Effective distance between main conductors	$2\pi 2 a_{\rm m}$
<i>a</i> : Center-line distance between conductors	
Main conductors consisting of single circular cross-sections	$a_{\rm m} = a$
Main conductors consisting of single rectangular cross-sections (factor k_{1s} see figure below)	$a_{\rm m} = \frac{a}{k_{\rm ls}}$
Maximum sub-conductors force acc. to IEC 60865-1 d	uring a 3-phase short-circuit
n: Number of sub-conductors $F_s = \frac{\mu_0}{2\pi} \left(\frac{i_p}{n}\right)^2 \frac{l_s}{a_s}$ l_s : Center-line distance between connecting pieces or between one connecting piece and the adja- cent support $F_s = \frac{\mu_0}{2\pi} \left(\frac{i_p}{n}\right)^2 \frac{l_s}{a_s}$ a_s : Effective distance be- tween sub-conductors	
Effective distance between sub-conductors with cir- cular cross-sections	$\frac{1}{a_{\rm s}} = \sum_{i=2}^n \frac{1}{a_{\rm li}}$
Effective distance between sub-conductors with rec- tangular cross-sections (factor k_{1s} see figure below)	$\frac{1}{a_{\rm s}} = \sum_{i=2}^{n} \frac{k_{1i}}{a_{1i}}$
1.4 1.4 1.2 0.8 0.6 0.6 0.6 0.6 0.4 0.2 2.0 2.0 0.6	
a_{1s}/d	\rightarrow
Factor k_{ls} for the calculation of the effective conductor distance	

12.9.3 Calculation of Mechanical Stress

 V_{σ} : Ratio of dynamic and static main conductor stress

- $V_{\rm r}$: Ratio of dynamic stress with unsuccessful three-phase automatic reclosing and dynamic stress with successful three-phase automatic reclosing
- Z: Section modulus of main conductor in direction of the bending axis
- β : Factor for main conductor stress (depends on type of beam and support)

Single-span beam	A and B simple supports		$\beta = 1,0$
	A: fixed support B: simple support	A B	$\beta = 0,73$
	A and B fixed supports	AB	$\beta = 0,5$
Continuous beam with equidistant simple supports	Two spans		$\beta = 0,73$
	Three or more spans		$\beta = 0,73$
Bending stress cause between the sub-co	sed by the forces onductors	$\sigma_{\rm s} = V_{\rm \sigma s} V_{\rm rs} \frac{F_{\rm s} l_{\rm s}}{16 Z_{\rm s}}$	

The variables with the index s are defined analogously to the variables for the main conductors given above.

A conductor is mechanically short-circuit-proof, if: $\sigma_{tot} = \sigma_m + \sigma_s$

 $\sigma_{\rm tot} = \sigma_{\rm m} + \sigma_{\rm s} \le \sigma_{\rm zul} = q R_{\rm p0,2}$

 $\sigma_{\rm tot}$: Total conductor stress

 $R_{p0,2}$: Stress corresponding to the yield strength

q: Factor of plasticity (depends on the conductor profile and load)

Section moduli Z are defined with respect to bending axis

rectangle	circle	circular ring
$\begin{array}{c}z\\ \vdots\\ \vdots\\ \vdots\\ \vdots\\ \vdots\\ \vdots\\ \vdots\\ b \end{array} \xrightarrow{y} h$	$\begin{array}{c}z\\ \vdots\\ \vdots\\ \vdots\\ D \end{array} \xrightarrow{y}$	z $(-, -, -, -)$ y $(-, -, -)$ $(-, -)$ y $(-, -)$
$Z_{\rm y} = \frac{bh^2}{6}, Z_{\rm z} = \frac{hb^2}{6}$	$Z = Z_y = Z_z = \frac{\pi}{32}D^3$	$Z = Z_y = Z_z = \frac{\pi}{32} \frac{D^4 - d^4}{D}$

13 Neutral Grounding

13.1 Equivalent Circuit for Single-Phase Line-to-Ground Faults

13.2 Currents and Voltages at Single-Phase Line-to-Ground Faults

Fault current at single-phase line-to-ground fault $(\underline{U}_{q1} = \underline{U}_{qa})$		
Fault current at single-phase line-to-ground fault $(\underline{Z}_{1F} = \underline{Z}_{2F})$	$\underline{I}_{aF} = 3 \underline{I}_{1F} = -\underline{I}_{CE} - \underline{I}_{GE} - \underline{I}_{ME}$ $= 3 \frac{\underline{U}_{q1}}{\underline{Z}_{1F} + \underline{Z}_{2F} + \underline{Z}_{0F}} = \frac{3}{2 + \underline{m}} \frac{\underline{U}_{q1}}{\underline{Z}_{1F}}$	
Capacitive ground fault cur- rent	$\underline{I}_{CE} = j\omega C_{E} \left(\underline{U}_{bF} + \underline{U}_{cF} \right) = j\omega C_{E}' l \left(\underline{U}_{bF} + \underline{U}_{cF} \right)$	
Conductive ground fault cur- rent	$\underline{I}_{\rm GE} = G_{\rm E} \left(\underline{U}_{\rm bF} + \underline{U}_{\rm cF} \right) = G_{\rm E}' l \left(\underline{U}_{\rm bF} + \underline{U}_{\rm cF} \right)$	
Neutral-to-ground current	$\underline{I}_{\rm ME} = \underline{Y}_{\rm ME} \underline{U}_{\rm ME}$	

13.3 Isolated Neutral Point

$ \underline{Z}_{\text{ME}} \rightarrow \infty, \underline{Z}_{1\text{F}} = \underline{Z}_{2\text{F}} \ll \underline{Z}_{0\text{F}} = 1/\underline{Y}_{\text{E}} , m \gg 1$		
Neutral-to-ground voltage	$\underline{U}_{\rm ME} \approx -\underline{U}_{\rm qa} = -\underline{U}_{\rm q1}$	
Fault current for single-phase line-to-ground fault = (nega- tive) cap. ground fault current	$\underline{I}_{aF} = -\underline{I}_{CE} - \underline{I}_{GE} \approx -\underline{I}_{CE} = j3\omega C_E \underline{U}_{q1}$	
Line-to-ground voltages of phases without faults	$\underline{\underline{U}}_{bF} \approx -\frac{\sqrt{3}}{2} \left(\sqrt{3} + j\right) \underline{\underline{U}}_{q1} = -\sqrt{3} \underline{\underline{U}}_{q1} e^{j\frac{\pi}{6}}$ $\underline{\underline{U}}_{cF} \approx -\frac{\sqrt{3}}{2} \left(\sqrt{3} - j\right) \underline{\underline{U}}_{q1} = -\sqrt{3} \underline{\underline{U}}_{q1} e^{-j\frac{\pi}{6}}$	
Ground fault factor	$\delta \approx \sqrt{3}$	

13.4 Resonant-Grounded Neutral Point (RESPE)

$\left \underline{Z}_{\mathrm{ME}}\right = f\left(\nu\right), \left \underline{Z}_{\mathrm{1F}}\right = \left \underline{Z}_{\mathrm{2F}}\right \ll \left \underline{Z}_{\mathrm{0F}}\right \approx \left \frac{1}{\left(\underline{Y}_{\mathrm{ME}}/3 + \underline{Y}_{\mathrm{E}}\right)}\right , \ m \gg 1$		
Neutral-to-ground voltage	$\underline{U}_{\rm ME} \approx -\underline{U}_{\rm qa} = -\underline{U}_{\rm q1}$	
Fault current for single-phase line-to-ground fault = ground fault current = residual current	$\underline{I}_{aF} = \underline{I}_{R} = -\underline{I}_{CE} - \underline{I}_{GE} - \underline{I}_{ME} = I_{Rw} + jI_{Rb}$ $= j\underline{I}_{CE} (d + jv) = 3\omega C_{E} (d + jv) \underline{U}_{q1}$	
Detuning $v > 0 \rightarrow$ undercompensated $v < 0 \rightarrow$ overcompensated	$v = 1 - \frac{1}{3\omega^2 C_{\rm E} L_{\rm ME}}$	
Attenuation	$d = \frac{G_{\rm ME} + 3G_{\rm E}}{3\omega C_{\rm E}}$	
Line-to-ground voltages of phases without faults	$\underline{U}_{bF} \approx -\sqrt{3} \underline{U}_{q1} \mathrm{e}^{\mathrm{j}\frac{\pi}{6}}$	
	$\underline{U}_{\rm cF} \approx -\sqrt{3} \underline{U}_{\rm q1} {\rm e}^{-{\rm j}\frac{\pi}{6}}$	
Ground fault factor	$\delta \approx \sqrt{3}$	
Neutral displacement voltage during undisturbed operation without ground fault Assumption: Unbalanced line-to-ground admittances $\underline{Y}_{aE} \neq \underline{Y}_{bE} \neq \underline{Y}_{cE}$		
Neutral-to-ground voltage	$\underline{U}_{\rm ME} = \frac{-\underline{k}}{d+j\nu} \underline{U}_{\rm qa}$	
Imbalance factor	$\underline{k} = \frac{\underline{Y}_{aE} + \underline{a}^2 \underline{Y}_{bE} + \underline{a} \underline{Y}_{cE}}{3 \omega C_E}$	
Mean values of line-to- ground capacitances and con- ductances	$C_{\rm E} = \frac{1}{3} (C_{\rm aE} + C_{\rm bE} + C_{\rm cE}), \ G_{\rm E} = \frac{1}{3} (G_{\rm aE} + G_{\rm bE} + G_{\rm cE})$	

13.5 Low-Impedance-Grounded Neutral Point (NOSPE)

$\left \underline{Z}_{ME}\right = f\left(I_{k1}'' < I_{k1max}''\right), \ \underline{Z}_{1F} = \underline{Z}_{2F} \approx \underline{Z}_{1}, \ \underline{Z}_{0F} \approx \underline{Z}_{0} + 3\underline{Z}_{ME}$ $m \approx 35, 5$ solidly grounded, partially solidly grounded, (HV and EHV grids)		
m > 4 current-limiting grounding (10 – 110-kV cable grids)		
Neutral-to-ground voltage	$\underline{U}_{\rm ME} \approx -\underline{U}_{\rm qa} + \underline{Z}_{\rm s} \underline{I}_{\rm aF}$	
Fault current for single-phase line-to-ground fault = line-to- ground short-circuit current	$\underline{I}_{aF} = \underline{I}_{k1}'' = \frac{3}{2 + \underline{m}} \frac{\underline{U}_{q1}}{\underline{Z}_{1F}} = \frac{3}{2 + \underline{m}} \underline{I}_{k3}'' \text{ with } \underline{U}_{q1} = c \frac{\underline{U}_{nN}}{\sqrt{3}}$ (voltage factor c, see Section 12.3)	
Line-to-ground voltages of phases without faults (see Sec- tion 13.2)	$\underline{U}_{bF} = f_{b}(\underline{m}), \ \underline{U}_{cF} = f_{c}(\underline{m}) \text{ with } \underline{m} \approx \frac{\underline{Z}_{0} + 3\underline{Z}_{ME}}{\underline{Z}_{1}}$	
Ground fault factor	$\delta \leq 1,4$ effectively grounded solidly / par- tially solidly grounding $\delta \approx 1, 4\sqrt{3}$ not effectively grounded current-limiting grounding	

Heat flow and quantity of heat	$P_{\rm th}\left(t\right) = \frac{\mathrm{d}Q_{\rm th}\left(t\right)}{\mathrm{d}t} = \dot{Q}_{\rm th}\left(t\right)$	
Law of conservation of energy $(c_p: specific heat capacity)$	$mc_{\rm p}\Delta \vartheta = \Delta Q_{\rm th} = Q_{\rm th,zu} - Q_{\rm th,ab}$	
Thermal resistance for heat conduction (λ : thermal conductivity)	$R_{\rm th} = \frac{\Delta \mathcal{G}}{P_{\rm th}} = \frac{\Delta x}{\lambda A}$	
Thermal resistance for convection (α : heat transfer coefficient)	$R_{\rm th} = \frac{\Delta \mathcal{G}}{P_{\rm th}} = \frac{1}{\alpha A}$	
Analogy between thermal and electrical quantities		
Analogy between thermal and electric	cal quantities	
Analogy between thermal and electric Quantity of heat in J = Ws	cal quantities Charge in C	
Analogy between thermal and electric Quantity of heat in J = Ws Heat flow in W	cal quantities Charge in C Current in A	
Analogy between thermal and electric Quantity of heat in J = Ws Heat flow in W Difference in temperature in K	cal quantities Charge in C Current in A Voltage in V	
Analogy between thermal and electric Quantity of heat in J = Ws Heat flow in W Difference in temperature in K Thermal capacity in J/K	cal quantities Charge in C Current in A Voltage in V Capacitance in F	
Analogy between thermal and electric Quantity of heat in J = Ws Heat flow in W Difference in temperature in K Thermal capacity in J/K Thermal resistance in K/W	cal quantities Charge in C Current in A Voltage in V Capacitance in F Resistance in Ω	

15 Wind Energy

Wind energy	$W_{\rm kinWind} = \frac{1}{2} m_{\rm Air} v_{\rm Wind}^2$
Wind power	$P_{\text{Wind}} = \frac{\mathrm{d}W_{\text{kin Wind}}}{\mathrm{d}t} = \frac{1}{2}\rho_{\text{Air}}A_{\text{Rotor}}v_{\text{Wind}}^3$
Rotor power (c_p : power coefficient)	$P_{\text{Rotor}} = \frac{1}{2} \rho_{\text{Air}} A_{\text{Rotor}} v_{\text{Wind}}^3 c_{\text{P}} (\lambda, \beta) = P_{\text{Wind}} c_{\text{P}} (\lambda, \beta)$
Tip speed ratio (<i>n</i> : rotational speed, <i>R</i> : radius of rotor)	$\lambda = \frac{\nu_{\text{Tip}}}{\nu_{\text{Wind}}} = \frac{2\pi nR}{\nu_{\text{Wind}}}$
Generator power $(\eta_{ges}: total efficiency)$	$P_{\text{Generator}} = P_{\text{Rotor}} \eta_{\text{ges}}$
Approximation of c_p with plant-specific constants c_i	$c_{\rm p}(\lambda,\beta) = \overline{c_1\left(\frac{c_2}{\lambda_1} - c_3\beta - c_4\beta^{c_5} - c_6\right)} e^{\frac{-c_7}{\lambda_1}}$ with $\frac{1}{\lambda_1} = \frac{1}{\lambda + c_8\beta} - \frac{c_9}{\beta^3 + 1}$

7

16 Energy Economics

Relationship between energy and power	$P(t) = \frac{\mathrm{d}W(t)}{\mathrm{d}t} \text{ resp. } \Delta W = W(t_1) - W(t_0)$ $= \int_{t_0}^{t_1} P(t) \mathrm{d}t$
Average power	$P_{\rm m} = \frac{1}{T_{\rm N}} \int_{0}^{T_{\rm N}} P(t) \mathrm{d}t$
Efficiency	$\eta = \frac{\text{output power}}{\text{input power}} = \frac{P_{ab}}{P_{zu}} = \frac{P_{zu} - P_{V}}{P_{zu}}$
Load factor m and utilization time $T_{\rm m}$	$m = \frac{T_{\rm m}}{T_{\rm N}} = \frac{\int_{0}^{T_{\rm N}} P(t) / P_{\rm max} \mathrm{d}t}{T_{\rm N}} = \frac{W}{P_{\rm max} T_{\rm N}} = \frac{P_{\rm m}}{P_{\rm max}}$
Energy loss $W_{\rm v}$ and utilization time of power losses $T_{\rm v}$	$W_{\rm V} = \mathcal{G}_{\rm W} P_{\rm V max} T_{\rm N} = \int_{0}^{T_{\rm N}} P_{\rm V}(t) dt$ $= P_{\rm V m} T_{\rm N} = P_{\rm V max} T_{\rm V}$
Loss factor	$ \mathcal{G}_{W} = \frac{W_{V}}{P_{V \max} T_{N}} = \frac{\int_{0}^{T_{N}} P_{V}(t) dt}{P_{V \max} T_{N}} = \frac{P_{V \max}}{P_{V \max}} = \frac{T_{V}}{T_{N}} $ $ \frac{U \approx \text{const.}}{=} \frac{R \int_{0}^{T_{N}} I^{2}(t) dt}{R I_{\max}^{2} T_{N}} $ $ \frac{I^{2} \sim S^{2}}{S} = \frac{\int_{0}^{T_{N}} S^{2}(t) dt}{S_{\max}^{2} T_{N}} = \frac{\int_{0}^{T_{N}} (S(t)/S_{\max})^{2} dt}{T_{N}} $
Demand factor <i>g</i> (<i>k</i> : number of households)	$g(k) = \frac{p_{SLA}(k)}{p_{S}} \Leftrightarrow p_{SLA}(k) = g(k) p_{S}$ Peak load share p_{SLA} Connected load of household p_{S}
Approximation of demand factor for residential areas	$g(k) = g_{\infty} + (1 - g_{\infty})k^{-\frac{3}{4}}$ Limit for a high number of households g_{∞}

17 Annex

17.1 Selection of SI Base Units

Quantity	Symbol	Name	Unit symbol
Length	l	Meter	m
Mass	т	Kilogram	kg
Time	t	Second	S
Electric current	Ι	Ampere	А
Temperature	Т	Kelvin	K

17.2 Selection of Derived Units

Parameter	Symbol	Unit	Unit symbol
Energy	W, Q	Joule	J
Density	ρ	Kilogram/ cubic meter	kg/m ³
Torque	М	Newton meter	Nm
Angle	α	Radiant	rad
Electric conductance	G	Siemens	S
Voltage	U	Volt	V
Electric current density	S	Ampere/square meter	A/m ²
Electric resistance	R	Ohm	Ω
Frequency	f	Hertz	Hz
Speed	V	Meter/second	m/s
Inductance	L	Henry	Н
Capacitance	С	Farad	F
Force	F	Newton	Ν
Charge	Q	Coulomb	С
Power	Р	Watt	W
Magnetic field density	Н	Ampere/meter	A/m
Magnetic flux density	В	Tesla	Т
Moment of inertia	J	Kilogram · square meter	kg m ²
Permeability	μ	Henry/Meter	H/m
Temperature	9	Celsius	°C
Angular frequency	ω	Radiant/second	rad/s

Correlation of constants μ_0 , ϵ_0 and c	$\mu_0 = 1/\epsilon_0 c^2$	
Vacuum permeability μ_0	$\mu_0 = 1,25663\cdot 10^{-6}$	Vs/Am
Vacuum permittivity ε_0	$\varepsilon_0 = 8,85418\cdot 10^{-12}$	As/Vm
Speed of light c	c = 299792458	m/s
Euler's constant e	e = 2,71828	

17.3 Natural Constants and Mathematical Constants

17.4 Phasor Rotations with <u>a</u> and j

17.5 *n*-th Root of a Complex Number <u>G</u>

De Moivre's formula	$\sqrt[n]{\underline{G}} = \sqrt[n]{\overline{G}} \cdot e^{j\frac{\varphi_{g}+2\pi k}{n}}, \text{ for } k = 0, 1,, n-1$ for $n = 2$:
	$\sqrt{\underline{G}} = \pm \sqrt{\overline{G}} \cdot \mathrm{e}^{\mathrm{j}\frac{\varphi_{\mathrm{g}}}{2}}$

Theorem	Formula
Euler's formula	$e^{(\alpha+j\beta)} = \cosh(\alpha+j\beta) + \sinh(\alpha+j\beta)$ $= e^{\alpha} \cdot e^{j\beta} = e^{\alpha}(\cos\beta+j\sin\beta)$
	$\cosh(\alpha + j\beta) = \frac{1}{2} \left(e^{\alpha + j\beta} + e^{-(\alpha + j\beta)} \right) = \cosh(-(\alpha + j\beta))$
	$\sinh(\alpha + j\beta) = \frac{1}{2} \left(e^{\alpha + j\beta} - e^{-(\alpha + j\beta)} \right) = -\sinh(-(\alpha + j\beta))$
	$\sinh(\alpha + j\beta) = \sinh(\alpha)\cos(\beta) + j\cosh(\alpha)\sin(\beta)$
	$\cosh(\alpha + j\beta) = \cosh(\alpha)\cos(\beta) + j\sinh(\alpha)\sin(\beta)$
	$\cosh \alpha = \frac{1}{2}(e^{\alpha} + e^{-\alpha}) = \cos(j\alpha)$
Hyperbolic functions with	$\cosh(j\beta) = \frac{1}{2}(e^{j\beta} + e^{-j\beta}) = \cos(\beta)$
complex arguments	$\sinh \alpha = \frac{1}{2} (e^{\alpha} - e^{-\alpha}) = -j\sin(j\alpha)$
	$\sinh(j\beta) = \frac{1}{2j}(e^{j\beta} - e^{-j\beta}) = j\sin(\beta)$
	$\cosh \alpha + \sinh \alpha = \mathrm{e}^{\alpha}$
	$\cosh\alpha - \sinh\alpha = e^{-\alpha}$
	$\cosh^2 \alpha - \sinh^2 \alpha = 1$
	$\tanh \alpha = \frac{\sinh \alpha}{\cosh \alpha} = \frac{1}{\coth \alpha}$
De Moivre's formula for hyperbolic functions	$(\cosh \alpha \pm \sinh \alpha)^n = \cosh(n\alpha) \pm \sinh(n\alpha)$

17.6 Conversion Formulas for Hyperbolic and Exponential Functions

17.7 Conversion Formulas for Trigonometric Functions

Trigonometric functions	$\sin \alpha = \frac{\text{opposite side}}{\text{hypotenuse}}$
	$\sin \alpha = \frac{1}{2j} \left(e^{j\alpha} - e^{-j\alpha} \right) = -\frac{1}{2j} \left(e^{-j\alpha} - e^{j\alpha} \right) = -\sin(-\alpha)$
	$\cos \alpha = \frac{\text{adjacent side}}{\text{hypotenuse}}$
	$\cos\alpha = \frac{1}{2}(e^{j\alpha} + e^{-j\alpha}) = \cos(-\alpha)$
	$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{1}{\cot \alpha} = \frac{\text{opposite side}}{\text{adjacent side}}$
	$\cos^2\alpha + \sin^2\alpha = 1$

Addition theorems	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
	$\cos\left(\alpha\pm\frac{\pi}{2}\right)=\mp\sin\alpha=\pm\sin\left(-\alpha\right)$
	$\sin\left(\alpha\pm\frac{\pi}{2}\right)=\pm\cos\left(\alpha\right)=\pm\cos\left(-\alpha\right)$
	$\cos(\alpha - \frac{2\pi}{3}) = -\frac{1}{2}\cos\alpha + \frac{\sqrt{3}}{2}\sin\alpha$
	$\cos(\alpha + \frac{2\pi}{3}) = -\frac{1}{2}\cos\alpha - \frac{\sqrt{3}}{2}\sin\alpha$
	$\sin(\alpha - \frac{2\pi}{3}) = -\frac{1}{2}\sin\alpha - \frac{\sqrt{3}}{2}\cos\alpha$
	$\sin(\alpha + \frac{2\pi}{3}) = -\frac{1}{2}\sin\alpha + \frac{\sqrt{3}}{2}\cos\alpha$
	$\cos\alpha + \cos(\alpha - \frac{2\pi}{3}) + \cos(\alpha + \frac{2\pi}{3}) = 0$
	$\sin\alpha + \sin(\alpha - \frac{2\pi}{3}) + \sin(\alpha + \frac{2\pi}{3}) = 0$
	$\cos^{2} \alpha + \cos^{2} (\alpha - \frac{2\pi}{3}) + \cos^{2} (\alpha + \frac{2\pi}{3}) = \frac{3}{2}$
	$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$
	$\sin\alpha\sin\beta = \frac{1}{2}[\cos(\alpha-\beta) - \cos(\alpha+\beta)]$
Multiplications	$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$
	$\cos\alpha \sin\beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)]$
	$\cos\alpha\cos(\alpha-\tfrac{2\pi}{3})\cos(\alpha+\tfrac{2\pi}{3})=\tfrac{1}{4}\cos3\alpha$
	$\sin(2\alpha) = 2\sin\alpha \cdot \cos\alpha$
Multiples of an angle	$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$
Law of sines	$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \begin{pmatrix} \text{The angles } \alpha, \beta, \gamma \\ \text{face a, b, c.} \end{pmatrix}$
Law of cosines	$a^2 = b^2 + c^2 - 2bc\cos\alpha$

17.8 Selection of Values of Trigonometric Functions

Angle	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
cos	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$